Recovering Cutting Tool Modal Parameters From Randomly Sampled Signals Using Compressed Sensing
Subscribe/Renew Journal
A change in the modal parameters of cutting tools could signal tool wear, tool breakage, or other instabilities. The cutting process must be continuously monitored using vibration signals to detect such changes. Since tools vibrate with frequencies of up to a few kHz, continuous monitoring requires sampling at rates of tens of kHz to respect the Nyquist limit. Processing and storing such large data for decision making is cumbersome. To address this issue, this paper discusses the use of a compressed sensing framework that enables non-uniform random sampling at rates below the Nyquist limit. For cutting tools, we show for the first time using synthesized data that it is possible to reconstruct original signals from as few as 1% of the original data. We numerically test the method to characterize the influence of damping, noise, and multiple modes. Recovered modal parameters from the reconstructed signal agree with signals sampled properly.
Keywords
- Candes, E. J., Romberg, J., & Tao T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489-509. https://doi. org/10.1109/TIT.2005.862083
- Candes, E., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21-30. https://doi.org/ 10.1109/MSP.2007.914731
- Chen, S., & Donoho, D. (1994). Basis pursuit. Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, 1, 41-44. https://doi.org/10.1109/ACSSC.1994.471413
- Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006. 871582
- Gill, P. R., Wang, A., & Molnar, A. (2011). The in-crowd algorithm for fast basis pursuit denoising. IEEE Transactions on Signal Processing, 59(10), 4595-4605. https://doi. org/10.1109/TSP.2011.2161292
- Grant, M., & Boyd, S. (2013). CVX: MATLAB software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx
- Gupta, P., Law, M., & Mukhopadhyay, S. (2020). Evaluating tool point dynamics using output- only modal analysis with mass-change methods. CIRP Journal of Manufacturing Science and Technology, 31, 251-264. https://doi. org/10.1016/j.cirpj.2020.06.001
- Iglesias, A., Tunç, L. T., ozsahin, O., Franco, O., Munoa J., & Budak E. (2022). Alternative experimental methods for machine tool dynamics identification: A review. Mechanical Systems and Signal Processing, 170, 108837. https://doi.org/10.1016/j.ymssp.2022.108837
- Juang, J., & Pappa, R. S. (1985). An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance Control and Dynamics, 8(5), 620-627. https://doi.org/10.2514/3.20031
- Lambora, R., Nuhman, A. P., Law, M., & Mukhopadyay, S. (2022). Recovering cutting tool modal parameters from fractionally uncorrelated and potentially aliased signals. Annals of the CIRP, 38, 414-426. https://doi.org/10.1016/j. cirpj.2022.05.014
- Law, M., Gupta, P., & Mukhopadhyay, S. (2020). Modal analysis of machine tools using Visual Vibrometry and output-only methods. Annals of the CIRP, 69, 357-360. https://doi.org/10.1016/j. cirp.2020.04.043
- Law, M., Lambora, R., Nuhman, A. P., & Mukhopadhyay, S. (2022). Modal parameter recovery from temporally aliased video recordings of cutting tools. Annals of the CIRP, 71(1), 329-332. https://doi.org/10.1016/j.cirp. 2022.03.023
- Martinez, B., Green, A., Silva, M. F., Yang, Y., & Mascareñas, D. (2020). Sparse and random sampling techniques for high-resolution, full-field, BSS-based structural dynamics identification from video, Sensors. 20(12), 3526. https://doi.org/10.3390/s20123526
- Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association. 44(247), 335-341. https://doi. org/10.2307/2280232
- Yang, Y., & Nagarajaiah, S. (2015). Output-only modal identification by compressed sensing: non-uniform low-rate random sampling. Mechanical Systems and Signal Processing, 56-57, 15-34. https://doi.org/10.1016/j. ymssp.2014.10.015
- Yazicigil, R. T., Haque, T., Kinget, P. R., & Wright, J. (2019). Taking compressive sensing to the hardware level: breaking fundamental radio- frequency hardware performance tradeoffs. IEEE Signal Processing Magazine, 36(2), 81-100. https://doi.org/10.1109/MSP.2018.2880837
Abstract Views: 221
PDF Views: 0