An Optimal Resource Provisioning Algorithm for Cloud Computing Environment
Resource Provisioning in a Cloud Computing Environment ensures flexible and dynamic access of the cloud resources to the end users. The Multi-Objective Decision Making approach considers assigning priorities to the decision alternatives in the environment. Each alternative represents a cloud resource defined in terms of various characteristics termed as decision criteria. The provisioning objectives refer to the heterogeneous requirements of the cloud users. This research study proposes a Resource Interest Score Evaluation Optimal Resource Provisioning (RISE-ORP) algorithm which uses Analytical Hierarchy Process (AHP) and Ant Colony Optimization (ACO) as a unified MOMD approach to design an optimal resource provisioning system. It uses AHP as a method to rank the cloud resources for provisioning. The ACO is used to examine the cloud resources for which resource traits best satisfy the provisioning. The performance of this approach is analyzed using CloudSim. The experimental results show that our approach offers improvement in the performance of previously used AHP approach for resource provisioning.
Keywords
- Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic, 2009. “Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility” Future Generation computer systems, 25.6, 599-616, Elsevier.
- G Glauco Estácio Gonçalves, Patrícia Takako Endo, Thiago Damasceno Cordeiro, André Vitor de Almeida Palhares, Djamel Sadok, Judith Kelner, Bob Melander, and Jan-Erik Mångs, 2011 “Resource allocation in clouds: concepts, tools and research challenges.” 22nd Brazilian Symposium on Computer Networks and Distributed Systems (SBRC), SBC.
- Thomas Saaty, 1980 “The Analytic Hierarchy Process: Planning, Priority Setting, Resource, Allocation” McGraw-Hill, New York.
- Thomas Saaty and Thomas L, 1990 “How to make a decision: the analytic hierarchy process. European journal of operational research”, 48.1, 9-26, Elsevier.
- Daji Ergu, Gang Kou, Yi Peng, Yong Shi, and Yu Shi, 2013 “The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment.” The Journal of Supercomputing, 64.3, 835-848, Elsevier.
- Xia-yu Hua, Jun Zheng, and Wen-xin Hu, 2010 “Ant colony optimization algorithm for computing resource allocation based on cloud computing environment” Journal of East China Normal University (Natural Science), 1, 127-134, Oriprobe.
- Hu Wenxin Hu, Wen Xin, Jun Zheng, Xia Yu Hua, and Ya Qian Yang, 2013 “A Computing Capability Allocation Algorithm For Cloud Computing Environment." Applied Mechanics and Materials, 347, 2400-2406, Elsevier.
- Zhe Gao, 2014 “The Allocation of Cloud Computing Resources Based on the Improved Ant Colony Algorithm” 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2, 334-337, IEEE.
- Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar Buyya, 2011 “CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms.” Journal of Software: Practice and Experience, 41.1, 23-50, Wiley.
- NR Ram Mohan, and E. Babu Raj, 2012 “Resource Allocation Techniques in Cloud Computing--Research Challenges for Applications”, 2012 Fourth International Conference on Computational Intelligence and Communication Networks (CICN), 556-560, IEEE.
- Mohamed Abu Sharkh, Manar Jammal, Abdallah Shami, and Abdelkader Ouda, 2013 “Resource allocation in a network-based cloud computing environment: design challenges”. Communications Magazine, IEEE, 51.11, 46-52, IEEE.
- V. Vinothina, R. Sridaran, and Padmavathi Ganapathi, 2012 “A survey on resource allocation strategies in cloud computing.” International Journal of Advanced Computer Science and Applications 3.3, 97-104, SAI.
- Shu, Wanneng, Wei Wang, and Yunji Wang, 2014 “A novel energy-efficient resource allocation algorithm based on immune clonal optimization for green cloud computing” .EURASIP Journal on Wireless Communications and Networking. arXiv preprint arXiv:1405.4618.
- Xavier LeóN, and Leandro Navarro, 2013 “A Stackelberg game to derive the limits of energy savings for the allocation of data center resources." Future Generation Computer Systems 29.1, 74-83, Elsevier.
- Maha Jebalia , A. Ben Letai¨fa, Mohamed Hamdi, and Sami Tabbane, 2013 “A comparative study on game theoretic approaches for resource allocation in cloud computing architectures.” 2013 IEEE 22nd International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 336-341, IEEE.
- Iyer, Ganesh Neelakanta, and Bharadwaj Veeravalli, 2011 “On the resource allocation and pricing strategies in compute clouds using bargaining approaches”. 2011 17th IEEE International Conference onNetworks (ICON), 147-152.
- Bhat, Ramesh, Bharat Bhushan Verma, and Elan Reuben, 2001 ” Data envelopment analysis (DEA)”, Journal of Health Management, 3(2), 309-328.
- K. Reddy S, and Ch. S. Rao, 2012 “Dynamic Resource Allocation In The Cloud Computing Using Nephele’s Architecture”, International Journal Of Engineering Science & Advanced Technology(IJESAT), 2.4, 1144 – 1151.
- K. C. Gouda, Radhika, T. V., and Akshatha, M, 2013. “Priority based resource allocation model for cloud computing.” International Journal of Science, Engineering and Technology Research (IJSETR), 2278-7798.
- G Gunho Lee, Niraj Tolia, Parthasarathy Ranganathan, & Randy H. Katz. 2010 “Topology-aware resource allocation for data-intensive workloads.” In Proceedings of the first ACM Asia-pacific workshop on Workshop on systems, 1-6, ACM.
- Anil Singh, Kamlesh Dutta, and Avtar Singh, 2014 “Resource Allocation in Cloud Computing Environment using AHP Technique”. International Journal of Cloud Applications and Computing (IJCAC), 4.1, 33-44, IGI Global.
- C. S. M. I. C. (CSMIC), “SMI Framework,” URL http://betawww.cloudcommons.com/servicemeasurementindex.
Abstract Views: 301
PDF Views: 0