
(73)

ESCAPE SOA THROUGH CROSS DOMAIN ACCESS DWR APPROACH

Biswajit Pal

Associate- Cognizant Technology Solutions, Kolkata, India
email: pal.biswa@gmail.com

Abstract: There are a number of strategies that has the ability to call server side methods from the page itself directly.
An emerging technology is introduced in this paper named DWR - Direct Web Remoting that can iterate through java
collections from browser so that it is not dependent on XML/JSON based data exchange approach. The working
strategy of DWR is also discussed to facilitate cross domain access. Its advantages and limitations are mentioned.

Keywords: Webpage, DWR, cross domain access

1. Introduction

Sometimes requirement comes in a way that there is
need to access separate web domain from the same
webpage running in browser. In the era of web 2.0 across
the world, developers and designers work together to
give desktop like feel to users for all web applications
so that there will be no url redirection while interacting
in a web portal. To achieve this, applications are become
rich in AJAX calls.

But, in ajax based web applications, in which people
are regularly working, they need to parse the data to
and fro to render in page. There are several technologies
existing in market to cater this like EXT-JS, JQUERY
for easy handling JSON or XML string.

But, the parsing of XML/JSON string still exists that
an application developer cannot avoid. If one looks into
J2ee perspective, server side developer needs to prepare
the JSON/XML response before sending the data to
client and vice-versa. Here, the author will discuss
another emerging technology which has the ability to
call server side methods from the page itself directly
and can iterate through java collections from browser
so that he does not require to depend upon XML/JSON
based data exchange approach. This is DWR - Direct
Web Remoting.

Besides this, one of the best interesting features of
DWR is that one can call separate server side function
from the same page itself which are running in separate
web domain, which is cross site or cross domain
XMLHttpRequest. It gives one the flexibility to call
different domain objects from the same browser, but
user is not getting any feel of that. In this paper, detail
of DWR is discussed.

2. Familiarizing with DWR

DWR is a Java library that enables Java on the server
and JavaScript in a browser to interact and call each
other. DWR generates JavaScript to allow web browser
call into Java code almost as if it is running locally. It
can marshal virtually any data including collections,
POJOs, XML and binary data like images and PDF
files. All that is required is a security policy that defines
what is allowed. In nutshell, one can call java function
directly from the page itself.

Now, the question will arise in mind why one uses
DWR though there are stable products in market. As it
is discussed in the beginning, through DWR one can
iterate java collection in java script and not only that
one can play with user defined java beans in addition.
So, one does not require parsing XML to render data
which is a tedious job. Now, the step to configure DWR
is discussed first in a web application.

3. Configuration of DWR

 To install the DWR. JAR file
Dwr.jar is to place into the WEB-INF/lib directory of
the web application.

 To install the Commons Logging JAR file
DWR depends on Commons Logging. The
commons-logging.jar is to download and to place it
into the WEB-INF/lib directory of web application.

 To add the DWR servlet definition and mapping
to web.xml
One is to add the following lines to web application’s
deployment descriptor (WEB-INF/web.xml). The
<servlet> section needs to go with any existing
<servlet> sections, and likewise with the <servlet-
mapping> section.

Reason - A Technical Magazine
ISSN 2277–1654

Vol - X 2011Research Article

mailto:biswa@gmail.com

(74)

<servlet>
<servlet-name>dwr-invoker</servlet-name>
<display-name>DWR Servlet</display-name>
<description>Direct Web Remoter Servlet</description>
<servlet-class>org.directwebremoting.servlet.DwrServlet</servlet-

class>
<init-param>

<param-name>debug</param-name>
<param-value>true</param-value>

</init-param>>
</servlet>

<servlet-mapping>
<servlet-name>dwr-invoker</servlet-name>
<url-pattern>/dwr/*</url-pattern>

</servlet-mapping>

 Creating the DWR configuration file (dwr.xml)
To create a new file in web application’s WEB-INF directory (alongside web.xml) named dwr.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dwr PUBLIC "-//GetAhead Limited//DTD Direct Web Remoting
2.0//EN" "http://getahead.org/dwr/dwr20.dtd">
<dwr>
<allow>
<create creator="new" javascript="AjaxService" scope="application">
<param name="class" value="com.example.dwr.AjaxService "/>

</create>
</allow>

</dwr>

Now the application is configured with DWR.

1. Cross Domain Calls

One of the distinguished features of DWR is that one can call/access java methods residing in different web
domain from the same page. This feature enables one to interact with functionality implemented in distributed
way within the scope of same page, and moreover, the user will not able to distinguish as one is calling through
XMLHttpRequests. If one tries to visualize, this will look like the following as shown in Fig. 1.

Escape SOA through Cross Domain Access DWR Approach

http://getahead.org/dwr/dwr20.dtd

(75)

Figure 1 The scheme of cross domain access using DWR

4.1 Cross domain scripting – escaping complex
SOA in simpler way

When one is interacting with different objects in a
distributed environment, one generally thinks to do that
using service oriented architecture or remote procedure
calls. And to achieve that one needs to write lot of extra
java codes for marshalling and unmarshalling of objects.
One also needs to write complex codes for
communicating with service provider domain as well as
application domain which is benefiting from the service.
So, one will need a fancy server to make it happen,
one has to do a lot of unnecessary extra coding.
Because server to server communication running on
different web server is costlier in terms of complexity.

With Cross-Domain scripting, all one needs is Ajax
and it is all set. No server side computation and no

server side coding are required, no need to make calls
out of the server- life becomes a lot simpler. But only
bad news is that there are some security implications
as because one is allowing one’s script to talk to foreign
server beyond one’s web server scope. Unless one is
very careful with how one does one’s XHR call, one has
to trust the foreign web sites.

4.2 Configuration to achieve cross domain access

To make the application cross domain enable, one
needs to follow the following configuration.

4.2.1 Web.xml configuration

In web.xml file, one needs to add the following section
to allow DWR application for X-Domain call.

<init-param>
<param-name>allowScriptTagRemoting</param-name>
<param-value>true</param-value>

</init-param>

<!-- Disables DWR's CSRF protection -->
<init-param>

<param-name>crossDomainSessionSecurity</param-name>
<param-value>false</param-value>

</init-param>

<!-- Enables GET requests which are necessary for X-domain calls -->
<init-param>

<param-name>allowGetForSafariButMakeForgeryEasier</param-name>
<param-value>true</param-value>

</init-param>
</servlet>

Biswajit Pal

Web Server - A Common Web browser Web Server - B

(76)

4.2.2 Configuration in Java script
1. To specify a path to DwrServlet in JavaScript, before

engine.js is included .This is required because
DWR makes an initial call to server when engine.js
is loading.
<script>
 Var pathToDwrServlet =’http: //Remote_IP/
remote-context name/dwr’;
</script>

2. In the page from where one is calling a remote
method (resides in a remote server) one needs to
override path parameter in DWR interface .
 <Interface Name >._path = ‘<remote_ip><remote-
context name>/dwr’;

As an example:
<script>
 DWRExample._path=’http: //Remote_IP/
remote-context name/dwr’;
 DWRExample .demoMthod ();
</script>

4.2.3 Configuration in JSP
In the JSP, one needs to include the corresponding

java-script name for the Remote java class. This java
script will be dynamically generated by DWR. One only
has to include the js file. Basically, this js represents
the remote java class at page level, which enables DWR
to call the remote function. The script is as follow:

<script type=’text/javascript’ src=’http://
<remote_ip><remote-context name>;/dwr/
interface/Example.js’/>

Now, the configuration is done with and the application
is ready for cross domain access.

5. Conclusion

In the previous paragraphs, the technique named direct
web remoting (DWR) is introduced and its working
strategy is discussed for cross domain access. Also
its advantages and limitations are mentioned.

References

[1] http://directwebremoting.org/

[2] Proof of Concept on DWR Cross Domain Access.

Escape SOA through Cross Domain Access DWR Approach

http://directwebremoting.org/

