
(81)

INSIDE COMPUTATION

Biswanath Chakraborty

Department of Mechanical Engineering, Kalyani Govt. Engineering College, Kalyani- 741235
Email: bchakraborti85@gmail.com

Abstract: Computation involves both arithmetic calculations and logical operations. Arithmetic calculations can be
best described by the operations of addition. In computer science, time taken in executing some elementary operation
like addition is taken as one unit. More complex operations like multiplications etc. are assumed to require an integral
multiple of this basic unit. On the other hand, logical operations basically involve comparisons which can again be
described as the derived conclusion of some arithmetic operations. So, eventually, the question that arises how these
computations are done on a modern computer system. The current paper has been focused on this aspect of the
computer science.

Key words: Data type, Data Structure, NFA, DFA, Scheduling, Register, Kernel.

1. Introduction

It is well known that computer is an electronic device
that can perform computations quickly and accurately.
It is also known that to get the computation done
through computers algorithms are needed which are
well-defined computational procedure that takes some
value, or set of values, as input and produces some
value, or set of values as output. Thus it may be said
that an algorithm is a tool for solving a well-specified
computational problem. But the question is how does
an algorithm get executed using the hardware? How
does the signal, which is generated during the period
of execution, activate the hardware?

Basically the systems operate on data and that data
interact with other data as per their properties. In order
to execute a particular computation, maintaining an
interface of a high level language, a proper data
structure is needed so that the resources can be
allocated and locked in time.

2. The Role of Data Structure

A data structure can be perceived as an underlying
logical and mathematical model which governs the
characteristics of a domain. In order to establish data
structure as a model, it is required to define the Domain,
Function and Axiom (D.F.A) of it which will formulate
the entire gamut of the data structure.

Domain: Domain may be defined as a range of the

corresponding data type. The data structure of a data
type must hold the values within the range. The domain
of a data type (primitive and ADT) can also be defined
as a collection of resources. Through this it becomes
possible to define which resources can be locked by
which data.

Function: Functions define the type of operations that
can be applied on a particular data, be it of a primitive
data type or of an Abstract Data Type (ADT), e.g. the
function of ‘+’ may be arithmetic addition if the
concerned data are of numeric type (like integer, float,
double, etc.), and concatenation if they are of character
type.

Axiom: Axioms, on the other hand, define the set of
rules that govern the functional part of the data
structure. For execution of a given user-supplied data,
there will be a definite (deterministic) and finite number
of states which may be defined as Q (say). Let the
domain (range) be defined as . Let the functions (i.e.
transaction functions) be defined as which is governed
by the axioms stated above. Obviously, every
transaction has a starting state (q0) and it will generate
a definite output at the Final state (F).

Perceiving data structure in this way, it is possible
to state that the operation of data structure can be
designed in terms of a Deterministic Finite Automata
(A).

A = (Q, , , q0, F).

Reason - A Technical Magazine
ISSN 2277–1654

Vol - X 2011General Article

mailto:bchakraborti85@gmail.com

(82)

The stratum of data types and their corresponding data
structure i.e. the domains, functions and axioms reveals
that at the lowest rung there exists the primitive data
types advocated by character, integer, float, double etc.
These primitives and other non-primitives (e.g. array,
structure, class, enumeration, etc.), after a suitable mix,
generate the concept of abstract data types and
obviously they are composed of a larger domain, a
variety of functions which are used for creating a more
convenient user-friendly environment [1].

Abstract data types, as the name suggests,
encapsulate the heterogeneity which are inherent within
them are of two types – linear and non-linear. Here,
linearity implies the arrangement either along row or a
column e.g. array, linked list, stack, queue. The concept
of non-linearity comes into the picture when a breadth
as well as a depth of a particular data structure is
considered. As a consequence, the traversing
techniques like BFS, DFS or some heuristic searches
have been evolved.

Data structure, may be linear or non-linear, have
some specific usages. In the data structures’ stratum,
discussed above, graphs have got a niche position as
it can depict a real life situation where there are more
than one possibilities for traversing a particular node.
Here ‘nodes’ represent an object or a variable which
are used or locked for writing purposes. Since multiple
edges connecting a particular node may generate a
Non-deterministic Finite Automata (NFA), a graph may
create confusion as to which particular path to be
selected. So, the need is to convert it into a
corresponding tree where a proper root and the shortest
possible paths are selected from the graph traversing
among the nodes (NFA to DFA conversion). The tree
can be rotated as and when the situation demands and
the roots keep on changing. Different techniques are
used for this purpose and also different types of trees
have been evolved to cater the demands [2].

Non-linearity property of the tree data structure ends
up when the nodes are successfully traversed in a
particular order (inorder, preorder and postorder) and
the nodes are stored in a particular fashion (LIFO) in a
typical data structure called Stack. In stack, the nodes
are pointed by an arithmetic operation applied through
the pointers. Stack pointer increments or decrements

with the arithmetic incrementation or decrementation
and thus linearity comes in to the picture. The elements
are popped off from the stack as the transaction process
goes on and is stored in another data structure called
Queue where FIFO properties are maintained. It is
possible to overrule the FIFO property to make a suitable
scheduling algorithm or forecast the best situation by
applying some weights on the elements and generating
either the corresponding max-priority queue or the min-
priority queue.

It is to be noted that arrays and linked lists are the
basic building blocks of the advanced data structures.
Therefore, queue, in its different manifestation,
ultimately decomposed into linked lists and through
which the operating systems get the values – link
different values – load them to relocate at the proper
registers [3][4].

3. The Role of the Operating System

An Operating System (OS) could be designed as a
huge, jumbled collection of processes without any
structure. But this type of design would make it hard to
specify code, test and debug a large operating system.

3.1. Layered approach of the OS: Dijkstra advocated
the layered approach to lessen the design and
implementation complexities of an operating system.
The layered approach divides the OS in to several layers.
The functions of an operating system are then vertically
apportioned into these layers. Each layer has well-
defined functionality and input-output interfaces with the
two adjacent layers. Typically, the bottom layer
interfaces with the machine hardware and the top layer
interfaces with users (or operators).

A classic example of the layered approach is the THE
operating system which consists of six layers. The THE
multiprogramming system was a computer operating
system designed by a team led by Edsger W. Dijkstra,
described in monographs in 1965-66 and published in
1968. Dijkstra never named the system; “THE” is simply
the abbreviation of “Technische Hogeschool Eindhoven”,
then the name (in Dutch) of the Eindhoven University of
Technology of the Netherlands. The THE system was

Inside Computation

(83)

primarily a batch system that supported multitasking;
it was not designed as a multi-user operating system.
The set of processes in the THE system was static.

Another classic example of this approach is the
MULTICS system [5], which is structured as several
concentric layers (rings). This approach simplified the
complexities related to design and also enhances the
protection.

3.2. The Kernel based approach: The Kernel-based
design and structure of the operating system was
suggested by Brinch Hansen (Fig. 1). The Kernel or
nucleus is a collection of primitive facilities over which
the rest of the OS is built using the functions provided
by the Kernel.

Thus the Operating System plays an important role
in the execution of the above techniques. The most
commonly used modern Kernel based Operating
System in the World is WINDOWS. The structure of
Windows NT (Fig. 2), depicts that there are mainly two
parts of it. The upper part is the User mode (System
Interface) and the lower part is the Kernel. The Kernel
part is the vital part of the OS in a sense that it is
closed to Hardware. Different ‘Managers’ like Object
manager, Process manager, Memory manager, Security
manager, Cache manager, PnP manager, Power
manager, Config manager, LPC manager are the different
authoritative components of the Kernel. They are known
as the Executives. Apart from the Managers, Kernel
also holds the drivers of the related hardware. The I/O
manager provides a framework for managing the I/O
devices and provides generic I/O services. It provides
the rest of the system with device-independent I/O,
calling the appropriate driver to perform physical I/O. It
is also home to all the device drivers. The file systems
(FAT, NTFS) are technically device driveers under control
of the I/O manager. [6]

Operating System

Kernel

H/W

Fig. 1: Structure of a Kernel-based
Operating System [5]

4. The Influence of C and Low-Level Language

The Executive is written in C and can be ported to new
machines with relatively little effort. It consists of 10
components, each of which is just a collection of
procedures that work together to accomplish some goal
[6].

The users are at liberty to use any language for the
creation of different applications. But for execution of
those computations, they must pass through the Kernel
which is coded in C. Naturally, the rest of the operations
will be done through the executives and executives work
using the techniques of the ‘general purpose’ language
C. Memory management, process creation, inter alia,
are all done through C and pointers play the pivotal role
in it. Any computation, let it be an addition operation,
for the sake of simplicity, is done through pointer
operation be it explicitly declared or not.

The simple arithmetic computation of addition may
be considered in this case:

int a, b, sum=0; //Statement 1
a=5; //Statement 2
b=3; //Statement 3
sum=a+b; //Statement 4

It is expected that, at run time when the statement
2 is executed, the value 5 will be placed in that memory
location reserved for the storage of the value of ‘a’. Same
thing happens in Statement 1 (sum = 0) and statement
3. In C, a variable is referred such as the integer ‘a’ as
an ‘object’.

In a sense, there are two ‘values’ associated with
the object ‘a’. One is the value of the integer stored
there (5, for example) and the other is the ‘value’ of the
memory location i.e. the address of ‘a’ in the statement
int a=5; ‘a’ is called lvalue and 5 is called the rvalue.
rvalue is stored in the memory address identified by
the identifier name lvalue and therefore, 5=a; is illegal
[7].

According to Kernigham and Ritchie “An ‘object’ is
a named region of storage; an lvalue is an expression
referring to an object” [8].

In statement 4 when int sum=a+b; is written, the
previously declared lvalues ‘a’ and ‘b’ will be converted
to rvalues again through the pointer operation.

Biswanath Chakraborty

(84)

Inside Computation

For the execution of the computational process it is
necessary to reference a large range of locations in
main memory or, for some systems, virtual memory.
To achieve this objective, a variety of addressing
techniques [9] are employed. They all involve some
trade-off between address range and/or addressing
flexibility on the one hand and the number of memory
references and/or the complexity of address calculation,
on the other hand. This time the computational process
enters into the Low-Level Language from the High-Level
Language.

5. Activation of Logic Circuits

Ultimately, it is the time to activate the logic circuits. It
is evident from the above discussion that the drivers
are to be executed through the OS. The Instruction Set
specifically the Operator gets converted into signals
through Assembly Level Language [10]. In this case,
the Process management of the operating system
decomposes the job first into number of sub-processes
and each sub-process use different addresses. But when

the time of execution comes, these (sub) processes
are further decomposed into threads which operate on
the single instruction set and activate the corresponding
logic circuit. Naturally, they are operated on single
address [11].

6. Conclusion

Thus, it can be concluded, that behind every
computation the pivotal role is played by the data
structure. Data structure is a concept and every
computation corresponding to any language gets
compiled and passes through the pointer management
of the general purpose language C. The overall
management is governed by the OS. It provides step-
by-step aid for memory management, process creation,
instruction cycle and fetch cycle management, interrupt
handling, virtual to actual memory address mapping
and its management. Ultimately, the corresponding
logic circuit gets executed and the final output is
displayed through the output device.

(85)

Biswanath Chakraborty

References

[1] Langsam, Y., Augenstein, M.J. and Tenenbaum,
A.M. 1996, Data Structures Using C and C++,
Second edition, pp.6-14.

[2] Hopcroft J.E., Motwani, R. and Ullman, J.D. 2007,
Introduction to Automata Theory Languages, and
Computation, pp.55-102.

[3] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and
Clifford, S. 2009, Introduction to Algorithms, pp.20-
25.

[4] Beck, L.L. and Manjula, D. 2007, System Software-
An Introduction to Systems Programming, pp.129-
180.

[5] Singhal, M. and Shivaratri, N.G. 2009, Advanced
Concepts in Operating Systems, pp.4-10.

[6] Tanenbaum, A.S. 2005, Modern Operating
Systems, pp.778-800.

[7] Deitel P.J. and Deitel H.M. 2008, C How to
Program, pp.12-15.

[8] Kernighan, B.W. and Ritchie, D.M. 2007, The C
Programming Language, p.197.

[9] Stallings, W. 2003, Computer Organization &
Architecture-Designing for performance, pp.382-
388.

[10] Gaonkar, R. 2009, Microprocessor Architecture,
Programming and Application with the 8085, Fifth
Edition, p.46.

[11] Deitel H.M., Deitel P.J. and Choffnes D.R. 2007,
Operating Systems, pp.110-181.

