
(9)

OPTIMIZATION OF TRUSS STRUCTURE USING GENETIC
ALGORITHM PERFORMED ON GPU

Subhajit Sanfui1 and Ashish V. Gajbhiye2

1Dept. of Mechanical Engineering, IIT Guwahati, Guwahati, India, Email: s.sanfui@iitg.ernet.in
2Dept. of Mechanical Engineering, IIT Guwahati, Guwahati, India, Email: a.gajbhiye@iitg.ernet.in

Paper received on: December 23, 2014, accepted after revision on: November 02, 2015

Abstract: Modern Graphics Processing Units (GPU), offer a tremendous computing power, that is
frequently an order of magnitude larger than even the most modern multi-core CPUs, making them
an attractive platform for high performance computing due to their relative cheapness compared with
conventional PC clusters. General purpose computing on GPUs (GPGPU) is becoming popular in
High Performance Computing (HPC) because of its high peak performance. In this paper, a typical
two-dimensional truss structure optimization problem is solved using Binary Genetic Algorithm
(BGA) on both CPU and GPU. The kernel inside the GPU code computes the nodal displacements
and elemental stresses by Finite Element Analysis (FEA) to evaluate the objective function and the
constraints while making use of the Single Instruction Multiple Data (SIMD) structure of GPU to
attain parallelization. The results are assessed for different values of parameters, such as complexity
of the problem, number of elements, population size, maximum allowable generations and number
of threads etc. to demonstrate how the value of speedup varies with these parameters and to provide
a basic guideline for choosing the parameters for a different problem. The results clearly establish
that calculations are performed considerably faster through the GPU than through the CPU in
general.

Keywords: GPU; Genetic Algorithm; GPGPU; Topology Optimization.

1. Introduction

Modern computational devices are becoming
more and more parallel, while GPUs are at the
leading edge of this trend. The development of
programmable GPUs opens up a new area of
research, enabling the use of them for processing
non-graphic compute-intensive problems. The
enormous computational power available in
modern GPUs can pave the way for their usage
in HPC. The peak performance of a modern CPU
is approximately 70 GFlops, while the latest high-
end GPUs boast over 4.29 TFlops of performance.
This enormous difference in computing capability
has driven a multitude of modern researchers
from several f ields to exploit the inherent
parallelism in several computationally intensive
problems for attaining performance [1].

The simple truss optimization problem, used in
this paper has already been solved by a number
of researchers, as the stepping stone of structural

optimization. Evolutionary computational
techniques are probably one of the best ways to
solve this kind of problem, as shown by many
researchers in this field. It has also been shown
that among all the evolutionary techniques
available, GA often provides superior results, as
compared to other other complicated and
specialized methods [2, 3]. Goldberg and Samtani
[4] appear to have first suggested the use of GAs
for structural optimization. They considered the
use of a GA to optimize a 10-bar plane truss. A
few others have applied the technique to the
design of welded beams [5], plane frames [6], a
trussed-beam roof structure and a thin-walled
cross section, and generalized trusses [7-9].
Among the more recent works, Ruiyi et al. [10]
solved the truss topology optimization problem
using GA with an Individual Identification Technique
to get rid of redundant and repetitive computation.
In 2014, Cazacu et al. [9] applied GA for
optimization of steel trusses on MATLAB using a

Reason - A Technical Journal
ISSN 2277–1654

Volume - XIV ● 2015

(10)

specialized penalty function. Conforming to this
trend of using GA for truss optimization problems,
this paper primarily aims at further reducing the
computation time.

The programming language used for coding on
the CPU and the GPU are C/C++ and CUDA
respectively. CUDA is the parallel computing
platform and programming model created by
NVIDIA. The GPU used in the present study is
NVidia Tesla C2075, with 448 CUDA cores and 6
Gigabytes of global memory. A number of different
structures are optimized using the same
algorithm in this work to establish the efficiency
of the GPU. The primary focus is kept on the
comparison of the same results, computed on
the CPU and the GPU. In the next section a
detailed statement of the truss design problem,
and in the following sections, details of the
optimization algorithm are presented. These are
followed by the obtained results and conclusions.

2.PROBLEM DESCRIPTION

2.1 Basic Problem Statement

Optimization of the topology of a two dimensional
truss structure (Fig. 1) is aimed at by minimizing
its weight and/or the maximum stress/deflection
occurring at any node, subjected to the
constraints that values of the nodal deflections
and values of the elemental stresses should not
exceed certain permissible values.

Subject to
i
<=

yield
 for i=1,2,…,16

i
<=

max
i=1,2,…, 8

2. Maximize F = 1/((w
1
*weight)+(w

2
*

max
))

Subject to
i
<=

yield
 for i=1, 2,…, 16

i
<=

max
i=1,2,…, 8

The first problem is a single objective optimization
problem whereas the second one is a multi-
objective one. The weights w

1
and w

2
are set

through trial and error.
i
and ”

i
denote respectively

the stress in the ith member and deflection of the
ith node.

yield
and

max
represent the maximum

permissible values of the stresses and deflection.
The objective function is taken as a maximization
one because the algorithm uses proportionate
selection method, which is suitable for
maximization problem in general.

3. OPTIMIZATION METHOD AND
 ALGORITHM

3.1 Optimization Method

Binary Genetic Algorithm (BGA) is selected as the
optimization method to solve the problem
discussed in the previous section. Gas differ from
traditional optimization methods in many ways [3].
The reasons of choosing BGA are as follows:

1. Works with a population of solutions instead
of one. Hence, a number of solutions with
equal or close objective function value can be
obtained.

2. Does not require problem specific knowledge
to carry out a search.

3. A particular configuration of the structure can
be represented by a binary string very easily.

4. Evolutionary algorithms tend to be efficient in
solving structural optimization problems in
general.

5. Because of the stochastic nature of GA, it
appears to be robust in noisy environments.

6. GAs operate on multiple partial solutions
simultaneously (sometimes called implicit
parallelism), gathering information from a
population of search points to direct
subsequent search efforts. Their ability to

Fig.1. A typical truss structure

2.2 Mathematical Formulation

Mathematical formulation to solve the present
problem is made as follows:

1. Maximize F = 1/(Weight of the structure)

Optimization of Truss Structure Using Genetic Algorithm Performed on GPU

(11)

Fig. 3. Numbering of elements

maintain multiple partial solutions concurrently
helps make GAs less susceptible to the
problems of local maxima and noise [2].

Details of the BGA used in this paper are as
follows:

1. Proportionate Selection

2. Single Point Crossover

3. Bitwise Mutation

4. () / (+) Survival Scheme

5. Population 100

6. Crossover Probability 0.9

7. Mutation Probability 0.25

The values of the crossover and mutation
probability are set through trial and error to
facilitate good convergence.

Fig.2 shows the typical flow of a BGA.

Fig. 2. General form of Genetic Algorithm

3.2 Details of the Algorithm

Fig. 3 and Fig. 4 represent the numbering
sequence of the elements and the nodes
respectively.

Solution Representation

According to the rule shown by the numberings
in Fig. 3, any configuration of the truss can be
represented by a 16 bit binary string.

e.g. 0011010110101101

Algorithm on CPU

On the CPU, the code (written in C) is executed
as a serial one. The flow of the algorithm is as
shown in Fig. 2.

Algorithm on GPU

On the GPU, the entire code may be divided into
two separate parts,

a. Parallel Part

b. Serial Part

Fig. 4. Numbering of Nodes

For one run of the algorithm, the fitness of a
number of individuals is calculated twice. First,
inside the proportionate selection function (n
individuals) and second, inside the survival
function (2 *n individuals). The calculation of the
fitness values of the individuals is carried out
inside kernels, and hence is the parallel part of
the code, whereas the rest of the code is carried
out on the CPU, and hence, is the serial part of
the code. The GPU and the CPU versions of the
algorithm differ only in terms of calculating the
fitness value. Fig. 5 and Fig. 6 show schematics
of the calculation of fitness value on GPU and CPU
respectively.

As shown in Fig. 5, the fitness values of all the
individuals are carried out in parallel, and the
values are stored in a one dimensional array on

Subhajit Sanfui and Ashish V. Gajbhiye

(12)

the device. Following this, the data is transferred
back to the host (CPU) using the cudaMemcpy
function of the standard CUDA library for further
computation.

Two schemes of parallelism are implemented in
this paper.

a. One Block, n Threads

b. n Blocks, 1 Thread

Results obtained from these two schemes are
compared in the results section.

Fig. 5. Calculation of fitness inside GPU

Although, in this paper, parallelism is implemented
only at the level of the optimization algorithm, by
exploiting the natural parallelization features of GA,
it can also be implemented at the level of structural
analysis where complex f inite element
calculations are performed [8]. Following are the
steps to take to calculate fitness.

1. To generate elemental stiffness for each
member.

2. If member is present, E=Eactual.

If not present, E=Eactualx10-6

3. To generate global stiffness by assembling

4. To solve 16x16 system to f ind nodal
deflections

5. To find stresses in each member

6. If Stress in each member is under yield
stress, return (1/weight)

7. Else return (1/ (weight + penalty))

3.3 Modifications

To deal with infeasible solutions, following
continuity conditions are imposed for directing the
search towards feasible regions of the search
space.

i. At least one of the elements from each of the
the sets {0, 1, 2, 3, 4}, {6, 7, 8, 9} and {11, 13, 15}
has to be present.

ii. Nodes 1, 4 & 8 have to be present.

iii. A hanging member is either removed, or another
member is added such that it is not hanging
anymore, based on a probability of 0.5.

4 RESULTS AND DISCUSSION

In this section, the resulting structures of the BGA
for different yield stresses (High, Mediumand Low)
and different objective functions (Problem 1 & 2)
are presented, followed by the variation of the
speedup with different parameters.For High and
low values of the yield stress, the properties of
Aramid (3600 MPa) and Cast Iron (130 MPa) are
used respectively. For a Mid-Range yield stress,
an intermediate value (500 MPa) is chosen.

Fig. 6. Calculation of fitness inside CPU

Optimization of Truss Structure Using Genetic Algorithm Performed on GPU

(13)

4.1 Resulting Structures

Following resulting structures are obtained as the
output of the algorithm.

• With yield stress set to a high value (Fig. 7)

• With yield stress set to a medium value (Fig. 8)

• With yield stress set to a low value (Fig. 9)

• Further lowering the yield stress (Fig. 10)

• With the multi-objective problem (Problem 2)
(Fig. 11)

Fig. 7. Solutions with high yield stress

Fig. 8. Solutions with medium yield stress

Fig. 9. Solutions with low yield stress

Fig. 10. Further lowering yield stress

Fig. 11. Solution of problem 2

4.2 Variation of Speedup with Different
Parameters

Fig. 12 shows the variation of run time with the
number of population (same as number of
threads) for a ‘One block multiple threads’
scheme.

Fig. 12. Plot of time with variation of
 number of threads

Since the number of threads is set equal to the
population size, with increase in number of
threads, calculation time is also increased. The
maximum number of threads usable for one block
is 640 (obtained experimentally for the particular
GPU in use). Since in the () Survival Scheme,
2*n number of threads are to be utilized, the
maximum permissible value of population
becomes half of 640 or 320 in this parallelization
scheme.

Subhajit Sanfui and Ashish V. Gajbhiye

(14)

Fig. 13 shows the variation of run time with the
number of population (same as number of
threads) for a ‘Multiple blocks one thread’ scheme.

Fig. 13. Plot of time with variation of
number of blocks

In this case also, since the number of blocks is
set equal to the population size, calculation time
increases linearly with increase in population size.
However, in this scheme of parallelization, the limit
on the number of blocks (and hence on the
population size) is far greater than in the previous
scheme.

Fig.14 shows the comparison between ‘single
thread multiple blocks’ and ‘single block multiple
threads’ schemes together.

This figure more than clearly indicates that the
‘Single Block Multiple Threads’ scheme is
considerably more efficient than the ‘Multiple
Blocks Single Thread’ scheme. It also indicates
the limit for the multiple threads scheme, which
is not present in the multiple blocks scheme.

The execution time on the GPU is calculated using
the NVIDIA Profiler nvprof, whereas, that of the
CPU is calculated using the clock() function. For
a more accurate measurement of the execution
time, more precise methods may be applied.For
a population size of 100, the speedup obtained is
3.06, whereas, for a population size of 300, the
attained speedup is 4.36.

Fig. 15 shows the variation of speedup with
population size.

Fig. 14. Comparison of two schemes

Fig. 15. Plot of Speedup with variation of
Population Size

It can be clearly seen from the Fig. 15 that the
speedup increases with increase in population
size. However, the rate of increase decreases
gradually. Beyond 250 population size, the curve
becomes almost horizontal, indicating the
invariance of speedup with population size.

Fig. 16 shows the comparison of Run time with
the population size for both CPU and GPU.

Optimization of Truss Structure Using Genetic Algorithm Performed on GPU

(15)

Fig. 16. Performance of GPU and CPU with
population size

The slope for the CPU curve is higher than that of
the GPU curve. For the same population size,
computation time is considerably higher in CPU
than in GPU. This difference becomes more
pronounced with increase in population size.

4.3 Variation of Speedup vs Complexity of the
Problem

To analyze the effect of increasing complexity of
the problem on the speedup obtained, the
algorithm is tested on two more problems of
higher complexity. The two structures are shown
in Fig. 17. Although ‘complex’ is a relative term,
the number of nodes or number of elements may
be taken as quantitative measurements of the
complexity of the structural optimization problem.
Compared to the number of elements, the number
of nodes can serve as a better attribute for
complexity, since it is directly related to the
dimension of the linear system of equations to be
solved in the Finite Element Analysis, which is
twice the number of nodes in the structure.

The structures in Fig. 17 comprise of 29
elements, 12 nodes and 42 elements, 16 nodes
respectively as compared to 16 elements and 8
nodes of the primary

problem. Optimization of this kind of structures
requires complex continuity conditions to handle
the problems of infeasible structure and hanging
members. This paper does not aim at solving
these problems efficiently i.e. handling the

problems discussed in section III C. Instead it aims
at establishing a basic relationship between the
speedup and the increasing complexity of a
problem.

Fig. 17. Structures with 16 and 12 nodes

In a nutshell, the number of nodes and elements
is taken as a measure of complexity of a structural
optimization problem and is varied with the
obtained speedups. Before going into the
complexity versus speedup variation, the results
for these problems are presented.

For the problem shown in Fig. 17, solutions are
obtained as shown in Fig. 18 and Fig. 19.

Fig. 18. Solutions of 29 element truss

As can be seen, while some of the results
obtained are good, some do contain infeasibility

Subhajit Sanfui and Ashish V. Gajbhiye

(16)

and hanging members. Correction of these is out
of scope of this paper. Comparison of speedups
with the number of nodes and elements is shown
in Fig. 20 and Fig. 21. From these two figures, it
is clear that the speedup is more if complexity is
high. The slope is higher in case of Fig. 21 than in
case of 20.

Fig. 19. Solutions of 42 element truss

Fig. 22. Plot of Speedup with variation of Maximum
generations

Fig. 20. Plot of Speedup with variation of
Number of elements

Fig. 21. Plot of Speedup with variation of
Number of Nodes

Lastly, Fig. 22 shows the variation of speedup with
the number of maximum generations of BGA. Here
also, the speedup increases if the maximum
number of generations in BGA is set to a higher
value.

Optimization of Truss Structure Using Genetic Algorithm Performed on GPU

(17)

5 CONCLUSION

Based on the results shown in Section IV, it can
be concluded that, for the same amount of
computation, GPU takes considerably less time
than the CPU in case of topology optimization
problem using GA. The speedup increases with
increasing population size, maximum generations
of GA, complexity of the structure, complexity of
the objective function, number of nodes and
number of elements. Although GPU seems to be
a lucrative choice for about any kind of problem,
If only the complexity of the problem is above a
certain limit, the problem is feasible for parallel
implementation given the extra effort for coding
and implementation. By comparison of the two
schemes of parallelization (Single Block Multiple
Threads & Multiple Block, Single threads), it is
clear that Multiple threads scheme is faster, but it
suffers a drawback of low maximum limit (640).
For most of the conventional problems this is
enough as the population size. But for certain
problems a higher population size may be
required, in which case, an alternative ‘Multiple
Blocks, Multiple Threads’, schememay be
employed.

Acknowledgment: Authors would like to thank Dr.
Deepak Sharma for his contributions in this paper
that helped in completion of this project.

REFERENCES

[1] Chen, G., Li, G., Pei, S. and Wu, B. High
Performance Computing Via a GPU,
Proceedings of the 1st International
Conference on Information Science and
Engineering, 2009.

[2] Coello, C.A., Rudnick, M. and Christiansen,
A.D., Using Genetic Algorithms for Optimal

Design of Trusses, IEEE Event, Tulane
University, New Orleans, 1994.

[3] Buckles, B.P. and Petry, F.E., Genetic
Algorithms. Technology Series. IEEE
Computer Society Press, 1992.

[4] Goldberg, D.E. and Samtani, M.P.,
Engineering Optimization Via Genetic
Algorithm, Proceedings of Ninth Conference
on Electronic Computation, New York,
pp.471-482, 1986.

[5] Deb, K., Optimal Design of a Welded Beam
via Genetic Algorithms, Proceedings of AIAA
Journal, Vol.29, pp.2013-2015, 1991.

[6] Jenkins, W.M., Plane Frame Optimum
Design Environment Based on Genetic
Algorithm, Journal of Structural Engineering,
Vol.118, No.11, pp.3103-3013, 1992.

[7] Rajeev, S., Krishnamoorthy, C.S., Discrete
Optimization of Structures using Genetic
Algorithms, Journal of Structural Engineering,
Vol.118, No.5, pp.1233-1250, 1992.

[8] Papadrakakis, M., Lagaros, N.D. and
Fragakis, Y., Parallel Computational
Strategies for Structural Optimization,
International Journal of Numerical Methods
in Engng, 2003.

[9] Cazacu, R. and Grama, L., Steel Truss
Optimization Using Genetic Algorithms and
FEA, Procedia Technology, Vol.12, pp.339-
346, 2014.

[10] Ruiyi, S., Liangjin, G. and Zijie, F., Truss
Topology Optimization Using Genetic
Algorithm with Individual Identification,
Proceedings of the World Congress on
Engineering, Vol. 2, 2009.

Subhajit Sanfui and Ashish V. Gajbhiye

