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1. Introduction:

Evolutionary optimization techniques are 
considered to be very well known problem solving 
approaches nowadays. The term evolutionary 
optimization is coined from the famous Darwinian 
theory of natural evolution. After Mendelian rules 
of genetics are rediscovered by De Vries, T. 
Morgan and his associates completed the theory 
of evolutionary genetics. The processes of 
evolutionary optimization are reformulated by 
John Holland for possible applications in the fields 
of scientific computation that are related to 
problem solving via constrained optimization. 
Evolutionary optimization algorithms fall in the 
category of non-deterministic polynomial time 
algorithms and are most suitable for solving 
combinatorial optimization problems. In this 
article, we shall describe recent trends of 
developments in the field of evolutionary 
optimization.

2. Evolution Programs:

Although the era of evolutionary 
computation started with a humble beginning, very 
soon scientists realized its power and possibilities 
and started developing different possible 
manifestations of the same either by modification 
or by hybridization. In its simplest and most well 
known form we call it a genetic algorithm (GA). 
However, many other derivatives of the said 
algorithms have been developed, of which 
evolutionary programming (E P ), evolution 
strategies (ES), genetic programming (GP) and

different hybrids like annealing evolution are highly 
used in different applications. All these evolution 
techniques are categorized under the nickname 
of evolutionary algorithm s (EA ). Another 
stochastic combinatorial optimization technique 
developed and grown up parallely is simulated 
annealing (SA), which mimics the thermodynamic 
process of metallurgical cooling of molten solids. 
Although this procedure is not considered to be a 
member of the so called evolutionary algorithms, 
its components are borrowed for developing new 
evolutionary approaches. The above mentioned 
annealing evolution algorithm is one such hybrid 
derivative of an. evolution program and simulated 
annealing.

2.1 Basics of SA and EA :

As mentioned earlier, both SA and EA 
are sto ch astic search  and optimization 
techniques. The prime difference between an 
evolution program and simulated annealing is that 
while the former deals with a number of candidate 
solutions simultaneously, the later works with a 
single candidate solution in each step.

Now, we must describe what a candidate 
solution is. It is nothing but an assignment of
values to the problem variables. Let, f(x.|, X2......
Xp) be the functional notation of the objective 
function of an optimization problem. Here, x.|, X2, 
. . . ,  Xp are called problem variables. We need to 
find out the optimal assignment of values to these 
variables that will optimize the objective function. 
Before applying an evolutionary technique, it
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should made confirmed that no deterministic 
polynomial time algorithm exists for solving the 
related problem. -f • J-

In case of simulated annealing, one 
starts with a random assignment to the problem 
variables and then proceeds toward the optimal 
assignment by local searches. In each iteration a 
new candidate solution is generated by small local 
perturbation of variables which is accepted or 
rejected probabilistically depending on its figure 
of merit in optimizing the objective function. At 
the start of the process the perturbation 
mechanism makes long strides to explore the 
search space appropriately which is reduced 
gradually as the process cools down to a near 
optimal solution. 

Now, since the search by simulated 
annealing in centered around a single candidate 
solution in each iteration, the process may 
produce only a locally optimal solution, i.e., may 
not reach the global solution. In other words, we 
can say that the search space explored by 
simulated annealing is very limited. 

To overcome this local search problem, 
evolution programs start with a number of random 
candidate solutions, located at different positions 
in the search space. 

Each of these candidate solutions then 
produce newer solutions by recombination and 
perturbation methods commonly known as 
crossover and mutation respectively. Figure of 
merit of each of the candidate solutions are then 
determined by evaluating the objective function, 
sometimes called metric, and better candidate 
solutions are selected for the next generation. 
The set of candidate solutions, used in a particular 
generation, is called a pool, and each candidate 
solution is termed a chromosome. 

One common problem of both SA and 
EA is that both of these processes are very slow 

mainly due to the time-costly evaluation step. In 
technical terminology this problem is called the 
evaluation overhead or fitness callas. Both SA and 
EA maintain a predefined series of operations 
within a loop. In case of SA, these operations are 
candidate generation, temperature determination, 
fitness evaluation and candidate sampling. In case 
of EA, these are selection, crossover, mutation 
and evaluation. In both the cases, fitness 
evaluation is the most time consuming operation. 
Moreover, in case of EA, the evaluation overhead 
is compounded by the use of multiple candidate 
solutions. 

3. Parallel SA and Parallel EA : 

To speedup execution and to overcome 
the barrier of fitness evaluation, parallel versions 
of both SA and EA were implemented. In its 
parallel manifestation, SA almost looks like an EA. 
Different kinds of parallel versions of SA and EA 

are described in the following subsections. 
- - • » • . • 

3.1 Parallel Simulated Annealing: 

Parallel SA procedures can be classified 
broadly on the basis of number of samplers used. 
In case a single sampler system, a particular 
candidate solution, out of a number of solutions 
produced by the generator, is sampled by the 
sampler for the next iteration. In case of a multiple 
sampler system, a number of samplers are used, 
each of which samples a particular solution and 
the sampled solutions are fed to the generators 
for production of the candidates for the next 
iteration. Schematic diagrams of the above 
systems are shown in Figures 1 and 2. 

In both Figures 1 and 2, the generate 
units generate new candidate solutions by 
perturbation. The candidates are evaluated for 
their fitness at the metric evaluation units. 
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Figure 1: Parallel SA with single samplei-
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Figure 2: Parallel SA with multiple sampler 

The sample exchange network then 
picks up suitable candidates for the next iteration. 
In case of a single sampler, only one of the 
candidates is picked up. And in case of multiple 
sampler a number of candidates are pickecj up 
and distributed among the generate units, jhe 
temperature scheduler part is not shown in the 
above figures. It is assumed a predetermined 
temperature schedule is maintained in the 
system. 

We can implement a parallel SA either 
by simulation in a uniprocessor system or we can 
use a number of processors each of which 
processes only one candidate solution. Parallel 
versions are intended both for better solutions and 
better convergence rates. Now, since in SA, the 
number of iterations is very large, the metric 
evaluation units consume most of the processing 
time. Hence we can expect a really faster rate of 
execution only if we use a fast hardware evaluation 
unit. Another advantage of such an evaluation unit 
is that, we need not use a number of isolated 
processors for parallelization. A uniprocessor 
system connected to a number of hardware 
&va>va}>oj7 vmis w»> work f>/>a. A>so a p>pa»/>& of 
the processing stages is possible which enhance 
the speedup to a very high level. 

3.2 Parallel Evolution Programs: 

As in the case of SA, parallel versions of 
EAs also exist. Actually an EA is a natural 
candidate for parallelization. Evolution processes 
do have a lot of inherent parallelism within 
themselves. Exploration and exploitation of this 
inherent parallelism is only possible if we design 
parallel algorithms and the corresponding parallel 
hardware. Some of the parallel EA schemes are 
presented in Figures 3,4 and 5. Parallel evolution 
programs differ mainly on the processor 
architecture and on the way the individual 
processors communicate among themselves. All 
of these architectures are supported by a 
distributed processing environment. 

In case of the master slave processor 
architecture, the pool of chromosomes are sent 
to slaves, one to each processor, by the master. 
So the number of slave processors must be 
equal to the pool size. In the mesh or circular 
arrangements, the complete pool is divided into 
subpools of smaller sizes and distributed among 
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the processors, which execute EA processes of 
their own. After intervals of certain generations, 

evaluation units only instead of individual slave 
processors, we can mal<e these parallel systems 
more cost-effective. 

3.3 Pipelined Evolution Programs: 
Recently pipelined versions of different 

evolution programs are bemg developed. By use 
of pipelining we can get extra speedup by virtue 
of overlapped execution in time-space. A very 
simple pipeline using the operators of a 
conventional GA is shown in Figure 6. 

Figure 3: Master slave arrangement 
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Figure 6: Basic pipeline architecture 

Figure 7 shows a particular pipeline 
configuration for a sample problem. In this figure 
the number of processing elements used are -

Figure 4: Mesh network of processors 
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Figure 5: Cyclic arrangement of processors 

information regarding intermediate candidate 
solutions are exchanged among the processors. 
In these cases also, each individual processor 
can employ their slaves for faster execution, which 
needs a large number of processors. Thus, if we 
can use specific general purpose hardware 
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Figure 7: A sample pipeline configuration 
determined by analyzing the relative complexities 
of the operations performed at these stages. In 
Figure 7, we have used 2 selection units (S), 1 
crossover unit(C), 8 mutation units (M) and 12 
evaluation units (E). 
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4. Conclusions: 
An attempt is made, in this article, to give 

tlie reader an overview of recent trends of 
development in the fields of evolutionary 
optimization techniques. It is observed that one 
should try to develop reliable and faster parallel 
systems. Wherever possible, the bottlenecks must 
be removed by appropriate hardware 
components, and if possible, to develop a 
complete independent hardware platform. 
Replacement of costly multiprocessor by a 
uniprocessor and dedicated scalable hardware 
units is emphasized. Parallel hardware 
components may be suitable for pipeline 
processing. In the limited scope of this article one 
must not expect a detailed description of the 
underlying processes. However, interested 
readers may go through the. references for better 
understanding. ;eq i, ^ ;o;1- i^ iut i l 
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