
RECENT TRENDS OF DEVELOPMENT IN
EVOLUTIONARY OPTIMIZATION

Malay Kumar Pakhira
Member of Faculty, Department of Computer Science and Engineering

E -m a il: malayjDakhira@yahoo.com

1. Introduction:

Evolutionary optimization techniques are
considered to be very well known problem solving
approaches nowadays. The term evolutionary
optimization is coined from the famous Darwinian
theory of natural evolution. After Mendelian rules
of genetics are rediscovered by De Vries, T.
Morgan and his associates completed the theory
of evolutionary genetics. The processes of
evolutionary optimization are reformulated by
John Holland for possible applications in the fields
of scientific computation that are related to
problem solving via constrained optimization.
Evolutionary optimization algorithms fall in the
category of non-deterministic polynomial time
algorithms and are most suitable for solving
combinatorial optimization problems. In this
article, we shall describe recent trends of
developments in the field of evolutionary
optimization.

2. Evolution Programs:

Although the era of evolutionary
computation started with a humble beginning, very
soon scientists realized its power and possibilities
and started developing different possible
manifestations of the same either by modification
or by hybridization. In its simplest and most well
known form we call it a genetic algorithm (GA).
However, many other derivatives of the said
algorithms have been developed, of which
evolutionary programming (E P), evolution
strategies (ES), genetic programming (GP) and

different hybrids like annealing evolution are highly
used in different applications. All these evolution
techniques are categorized under the nickname
of evolutionary algorithm s (EA). Another
stochastic combinatorial optimization technique
developed and grown up parallely is simulated
annealing (SA), which mimics the thermodynamic
process of metallurgical cooling of molten solids.
Although this procedure is not considered to be a
member of the so called evolutionary algorithms,
its components are borrowed for developing new
evolutionary approaches. The above mentioned
annealing evolution algorithm is one such hybrid
derivative of an. evolution program and simulated
annealing.

2.1 Basics of SA and EA :

As mentioned earlier, both SA and EA
are sto ch astic search and optimization
techniques. The prime difference between an
evolution program and simulated annealing is that
while the former deals with a number of candidate
solutions simultaneously, the later works with a
single candidate solution in each step.

Now, we must describe what a candidate
solution is. It is nothing but an assignment of
values to the problem variables. Let, f(x.|, X2......
Xp) be the functional notation of the objective
function of an optimization problem. Here, x.|, X2,
. . . , Xp are called problem variables. We need to
find out the optimal assignment of values to these
variables that will optimize the objective function.
Before applying an evolutionary technique, it

mailto:malay_pakhira@yahoo.com

should made confirmed that no deterministic
polynomial time algorithm exists for solving the
related problem. -f • J-

In case of simulated annealing, one
starts with a random assignment to the problem
variables and then proceeds toward the optimal
assignment by local searches. In each iteration a
new candidate solution is generated by small local
perturbation of variables which is accepted or
rejected probabilistically depending on its figure
of merit in optimizing the objective function. At
the start of the process the perturbation
mechanism makes long strides to explore the
search space appropriately which is reduced
gradually as the process cools down to a near
optimal solution.

Now, since the search by simulated
annealing in centered around a single candidate
solution in each iteration, the process may
produce only a locally optimal solution, i.e., may
not reach the global solution. In other words, we
can say that the search space explored by
simulated annealing is very limited.

To overcome this local search problem,
evolution programs start with a number of random
candidate solutions, located at different positions
in the search space.

Each of these candidate solutions then
produce newer solutions by recombination and
perturbation methods commonly known as
crossover and mutation respectively. Figure of
merit of each of the candidate solutions are then
determined by evaluating the objective function,
sometimes called metric, and better candidate
solutions are selected for the next generation.
The set of candidate solutions, used in a particular
generation, is called a pool, and each candidate
solution is termed a chromosome.

One common problem of both SA and
EA is that both of these processes are very slow

mainly due to the time-costly evaluation step. In
technical terminology this problem is called the
evaluation overhead or fitness callas. Both SA and
EA maintain a predefined series of operations
within a loop. In case of SA, these operations are
candidate generation, temperature determination,
fitness evaluation and candidate sampling. In case
of EA, these are selection, crossover, mutation
and evaluation. In both the cases, fitness
evaluation is the most time consuming operation.
Moreover, in case of EA, the evaluation overhead
is compounded by the use of multiple candidate
solutions.

3. Parallel SA and Parallel EA :

To speedup execution and to overcome
the barrier of fitness evaluation, parallel versions
of both SA and EA were implemented. In its
parallel manifestation, SA almost looks like an EA.
Different kinds of parallel versions of SA and EA

are described in the following subsections.
- - • » • . •

3.1 Parallel Simulated Annealing:

Parallel SA procedures can be classified
broadly on the basis of number of samplers used.
In case a single sampler system, a particular
candidate solution, out of a number of solutions
produced by the generator, is sampled by the
sampler for the next iteration. In case of a multiple
sampler system, a number of samplers are used,
each of which samples a particular solution and
the sampled solutions are fed to the generators
for production of the candidates for the next
iteration. Schematic diagrams of the above
systems are shown in Figures 1 and 2.

In both Figures 1 and 2, the generate
units generate new candidate solutions by
perturbation. The candidates are evaluated for
their fitness at the metric evaluation units.

(9)

CIUMIULII [fwliIrT

rj
CaOimi

0 0 0

Menu Mebiei

COBptti flnoBCt

Figure 1: Parallel SA with single samplei-

— - #

Geiientc2

f i ^ ^ H ^ ^ Pm^t i t^

"tZr- r
Mettkl MetrieZ

0 0 0 CmdiditBi

i i
I

Mefzici

i
SanqJcEiMKlcGwluBigenctwodc

J

Figure 2: Parallel SA with multiple sampler

The sample exchange network then
picks up suitable candidates for the next iteration.
In case of a single sampler, only one of the
candidates is picked up. And in case of multiple
sampler a number of candidates are pickecj up
and distributed among the generate units, jhe
temperature scheduler part is not shown in the
above figures. It is assumed a predetermined
temperature schedule is maintained in the
system.

We can implement a parallel SA either
by simulation in a uniprocessor system or we can
use a number of processors each of which
processes only one candidate solution. Parallel
versions are intended both for better solutions and
better convergence rates. Now, since in SA, the
number of iterations is very large, the metric
evaluation units consume most of the processing
time. Hence we can expect a really faster rate of
execution only if we use a fast hardware evaluation
unit. Another advantage of such an evaluation unit
is that, we need not use a number of isolated
processors for parallelization. A uniprocessor
system connected to a number of hardware
&va>va}>oj7 vmis w»> work f>/>a. A>so a p>pa»/>& of
the processing stages is possible which enhance
the speedup to a very high level.

3.2 Parallel Evolution Programs:

As in the case of SA, parallel versions of
EAs also exist. Actually an EA is a natural
candidate for parallelization. Evolution processes
do have a lot of inherent parallelism within
themselves. Exploration and exploitation of this
inherent parallelism is only possible if we design
parallel algorithms and the corresponding parallel
hardware. Some of the parallel EA schemes are
presented in Figures 3,4 and 5. Parallel evolution
programs differ mainly on the processor
architecture and on the way the individual
processors communicate among themselves. All
of these architectures are supported by a
distributed processing environment.

In case of the master slave processor
architecture, the pool of chromosomes are sent
to slaves, one to each processor, by the master.
So the number of slave processors must be
equal to the pool size. In the mesh or circular
arrangements, the complete pool is divided into
subpools of smaller sizes and distributed among

(10)

the processors, which execute EA processes of
their own. After intervals of certain generations,

evaluation units only instead of individual slave
processors, we can mal<e these parallel systems
more cost-effective.

3.3 Pipelined Evolution Programs:
Recently pipelined versions of different

evolution programs are bemg developed. By use
of pipelining we can get extra speedup by virtue
of overlapped execution in time-space. A very
simple pipeline using the operators of a
conventional GA is shown in Figure 6.

Figure 3: Master slave arrangement

LiJ H [c H | M | H I B |

POPULATION POOL

Figure 6: Basic pipeline architecture

Figure 7 shows a particular pipeline
configuration for a sample problem. In this figure
the number of processing elements used are -

Figure 4: Mesh network of processors

-ym^^'^-

-.v/%*^

":i>'

Figure 5: Cyclic arrangement of processors

information regarding intermediate candidate
solutions are exchanged among the processors.
In these cases also, each individual processor
can employ their slaves for faster execution, which
needs a large number of processors. Thus, if we
can use specific general purpose hardware

SI

S
^

.

' "^^

* M2 >

. IWB ^

• E l

y E2

> E3

POPULATION

Figure 7: A sample pipeline configuration
determined by analyzing the relative complexities
of the operations performed at these stages. In
Figure 7, we have used 2 selection units (S), 1
crossover unit(C), 8 mutation units (M) and 12
evaluation units (E).

(11)

4. Conclusions:
An attempt is made, in this article, to give

tlie reader an overview of recent trends of
development in the fields of evolutionary
optimization techniques. It is observed that one
should try to develop reliable and faster parallel
systems. Wherever possible, the bottlenecks must
be removed by appropriate hardware
components, and if possible, to develop a
complete independent hardware platform.
Replacement of costly multiprocessor by a
uniprocessor and dedicated scalable hardware
units is emphasized. Parallel hardware
components may be suitable for pipeline
processing. In the limited scope of this article one
must not expect a detailed description of the
underlying processes. However, interested
readers may go through the. references for better
understanding. ;eq i, ^ ;o;1- i^ iut i l

[6]

References: sinarrifiiB niii^-i-o^q Scjaqj-L:;
[1] J. Holland, "Adaptation in Neural and

Artificial Systems", Ann. Arbor, Ml:
University of Michigan, 1975.

[2] D. E. Goldberg, "Genetic Algorithms in
Search, Optimization and Machine
Learning", New York, Addison-Wesley,
1989. U ^ \4 ^ n U - : ^ I

[3] Z. Michalewicz, "Genetic Algorithms + Data
Structures = Evolution Programs", New
York, Springer-Verlag, 1992.

[4] S. Kirkpatrik, C. D. Geiatt and M. R Vecchi,
"Optimization by Simulated Annealing",
Science, vol. 220, pp. 671-680, 1983.

[5] E. Kantu-Paz, "A Survey of Parallel Genetic
,̂ Algorithms", tech. Report, Illinois GA

laboratory, Urbana, IL, 1997.
SVCJQC

• } fiffnu vo^\i 3Vt-:f! eiry

,1 IV

[7]

[8]

19]

[10]

[11]

[12]

[13]

!Drt

A W

M. K. Pakhira and R. K. De, "Function
Optimization using a Pipelined Genetic
Algorithm", in Proc. of Intl. Conf. on
Intelligent Sensing, Sensor Networks and
Information Processing (ISSNIP-04),
Melbourne, Australia, pp. 253-257, 2004.
M. K. Pakhira, R. K. De, S. Bandyopadhyay
and U. Maulik, "Pipelined Processing of
Genetic Clustering", in Proc. of Intl. Conf.
on Intelligent Sensing and Information
processing (ICISIP-04), Chennai, India, pp.
23-28. 2004 .

S. Baluja, "Structure and performance of
fine-grain parallelism in genetic search", in
Proc. of the fifth Intl. Conf. on Genetic
Algorithms, Morgan Kaufmann, San Mateo,
CA, pp. 155-162, 1993.
H. Muhlenbein, M. Scomisch and J. Born,
'The Parallel Genetic Algorithm as Function
Optimizer", in Proc. of the fourth Intl. Conf.
bn Genetic Algorithms, Morgan Kaufmann,
San Mateo, CA, pp. 271-278,1991.
R. Azencott, "Simulated annealing :
parallelization techniques", New York, John
Wiley, 1992.

S. Y. Lee and K. G. Lee, "Synchronous and
asynchronous parallel simulated annealing
with multiple Markov chains", IEEE Trans.
On Parallel and Distributed Systems, vol.
7, no. 10, pp. 993-1008, 1996.
M. K. Pakhira, "A Hybrid genetic algorithm
using probabilistic selection", in journal of
IE(I), vol. 84. pp. 23-30 2003.
M. K. Pakhira, "The Power of Genetic
Algorithms", in Reason (Technical Magazine
of KGEC), pp 05 - 08, 2002.

(12)

