
. NET
Siddhartha Bhattacharj-ya

Lecturer. Department of Information Technolog>'

I magine working as a software developer in
a soft ware firm with a billion turnover. You,
being adept in Visual Basic, are asked to join

a team of VC++ experts to carry out a million dollar
project. Simply speaking, you would be left with
only two options viz. either to start learning VC++
or quit. Obviously, either way, you are in trouble.
This problem is persistent with most of the
software engineers all over the world. The day a
new language arrives in the market, you have to
learn it to steal the show.

The situation has changed all the way round with
the advent of Microsoft .NET technology in July
2000. .NET is a multi-language platform (in other
words - language independent) that knits various
aspects of application development together with
the Internet. The framework covers all layers of
software development above the operating sys­
tem. This language independence means that you
are free to choose to work in whichever language
you (or your company) want.
.NET can be thought of as a layer that exists be­
neath your programs and provides a set of base
services and functions. This layer contains a set
of applications and operating systems called the
.NET servers; a foundation set of objects called

User Application

■NET F ram ew ork

.N ET Servers
Windows, BizTalk, Exchange, SQL

•NET D evices

Hardw are C om ponents

Figure 1 .N ET components

the .NET framework, and a set of services that
support all the .NET languages called the Common
Language Runtime (CLR). Figure 1 shows the
.NET components.

* C om m on Language Runtim e
Since .NET ensures cross language

interoperability, a runtime environment common to
all the languages is a prerequisite. The common
language runtime (CLR) provides such an
environment that all languages share. It manages
the execution of code and provides services that
make the development process easier. Compil­
ers and tools expose the runtime’s functionality and
enable you to write code or assembly that benefits
from this managed execution environment. The
basic components of a CLR are shown in Figure
2. CLR involves a two- stage compilation process.

An assembly is not an application. An
assembly is a collection of files that reside in the
same directory on the disk and contains source
files and resource files. Information about an
assembly is contained in the Manifest of the
assembly. An application is built from one or more
assemblies. A language specific compiler first
compiles the source code or an assembly into
what is known as Microsoft Intermediate Language
(MSIL) code. Microsoft intermediate language
(MSIL) is a CPU-independent set of instructions
that can be efficiently converted to native code.
MSIL includes a wide spectrum of instructions,
such as instructions for loading, storing, initializ­
ing, and calling methods on objects. It also includes
instructions for arithmetic and logical operations,
control flow, direct memory access, and exception
handling. When a compiler produces MSIL, it also
produces metadata by means of a metadata
engine. Metadata is a binary information
describing your code stored in a .NET Framework
portable executable (PE) file or in memory. Every
type and member defined and referenced in a file
or assembly is described within metadata. The

metadata describes the types in your code, includ­
ing the definition of each type, the signatures of
each type’s members, the members that your
code references, and other data that the runtime
uses at execution time. Metadata provides a
common frame of reference that enables
communication between the runtime, compilers,
debuggers, and code that has been compiled into
MSIL. It also helps the runtime and garbage col­
lection keep track of memory that will be released
back to the operating system when it is no longer
needed. The information stored in metadata also
enables the Common Language Runtime to
enforce security.

The runtime uses metadata to locate and load
classes, lay out instances in memory, resolve
method invocations, generate native code, enforce
security, and set up run time context boundaries.
The MSIL and any other optimized intermediate
language code or metadata from any other
compiled assembly are linked to form an
executable file (.exe) or a dynamic linked library
(.dll). This completes the first stage of compilation.

In the second stage of compilation, MSIL is
converted to CPU-specific code by a just in time
(JIT) compiler. The runtime supplies one or more
JIT compilers for each computer architecture,
hence the same set of MSIL can be JIT-compiled
and executed on any supported architecture.
Depending on the degree of optimization and
hardware platform, several types of JIT are in
existence. They are i) Standard JIT, which
produces highly optimized machine code. When
an IL function or method is invoked, standard JIT
analyzes, compiles, and caches it very fast. All
.NET programs using standard JIT become faster
as the various branches of execution within them
are converted to pure native code, ii) EconoJIT,
which targets small hardware platforms that do
not have a lot of RAM. It produces machine code
that is efficient but not optimal. Because EconoJIT
performs fewer optimizations than standard JIT
does, it compiles faster, iii) PreJIT, which is not
really a JITter in its own right. It is the invocation of
the standard JIT at the time when an application is
installed on a system. With PreJIT, the entire

application is completely converted from IL to
machine code.

During the second stage of compilation, any
class definitions and type names (or
Namespaces) used by an assembly are invoked
from the Base class library and verified before
being JIT compiled. Thus one gets a fully com­
piled code rather than one which is interpreted at
runtime.

Besides the two-stage compilation procedure,
which makes the total process hardware indepen­
dent, CLR offers the following benefits;

Interoperability & Scalability
Stability & Safe Deployment
Simple Component Replication
Code Re-use
Automatic Management
CLR Debugger
The CLR supports side-by-side execution, and
manages execution to use the benefits
provided by the CLR, language compilers such
as Visual Basic, C#, Visual C++, or one of
many third party compilers such as a Perl or
COBOL must target the runtime.

, .NET F ram ew ork
The essence of .NET lies in a genuine frame­

work, which entails the cross language
interoperability feature of the same. It provides two
key things: the base runtime environment and a
set of foundation classes. The runtime environ­
ment is similar to the operating system in that it
provides a layer between your program and the
complexities of the rest of the system, performing
services for your application and simplifying
access to the lower layers. The foundation classes
provide a large set of functionality, wrapping and
abstracting such technologies such as Internet
protocols, file system access, XML manipulation,
and more. The .NET Framework includes classes,
own set of Application Programming Interfaces
(APIs) and value types. It also includes types that
encapsulate data structures, perform I/O, give you
access to information about a loaded class, and
provide a way to invoke .NET Framework security
checks, data access, server controls and rich GUI

generation. .NET Framework objects automatically
communicate and interact with each other, even if
they are written in different languages. Objects can
call methods on other objects, inherit implemen­
tation from other objects, and pass instances of a
class to another class's methods. However, for
taking advantages of the runtime environment and
other functionality of the .NET framework, the com­
piler must produce a code that adheres to a cer­
tain standard. Microsoft provides this standard, the
Common Language Specification (CLS) as a way
to make a compiler .NET compatible. It includes
the basic language features needed by any appli­
cations. This specification is also equally applicable
for those components built by other languages. If
a component is CLS compliant and uses only CLS
features in the API, it is guaranteed to be acces­
sible from any object compiled by a language
compiler that supports the CLS.

A CLS-compliant code must use only CLS fea­
tures in the definitions of public classes, public
members of public classes, members accessible
to subclasses, parameters of public methods of
public classes and parameters of methods acces­
sible to subclasses.

, .NET Security
Any framework including the .NET framework

is prone to be endangered by brute forces. So the
security features of .NET framework need special
mention. .NET framework security relies on two
security mechanisms: i} Code access security and
ii} Role-based security. Code access security uses
permissions to control the access to protected
resources and operations. It helps protect com­
puter systems from malicious mobile code and
also provides a way to Sllow mobile code to run
safely. Role-based security provides information
needed to make decisions about what a user is
allowed to do. These decisions can be based on
either the user’s identity or role membership or
both. .NET framework security policy is the
configurable set of rules that the runtime follows
when deciding which permissions to grant to code.
The runtime determines the access to resources
code by examining identifiable characteristics of

the code, such as the web site or zone from which
the code originated. Based on policy, the runtime
grants permissions to both assemblies and appli­
cation domains. During execution, the runtime
ensures that code accesses only the resources
that it has been granted permission to access.
Some of the .NET framework security tools are:

Assembly generated utility
Caspol
cert2spc
Certmgr
Chktrust
Makecert
Permview
Pe verify
Secutil
Setreg
Sn
Storeadm

, .NET Servers
A major goal of .the NET concept is to reduce

the building of distributed systems, in which the
work is done at different locations at the server
level. Microsoft provides a set of software prod­
ucts that together are known as the .NET Enter­
prise Servers. They are designed to supply the
back end features needed by a distributed sys­
tem. These products include:

, The server operating system: MS Windows
(Server, Advanced Server, and Datacenter
Server)

, Clustering, load balancing, synchronization
and deployment software such as MS App
Center and MS Cluster Server

, A Database Server: MS SQL Server
, An e-mail, collaboration, and free-form infor­

mation storage system: MS Exchange Server
• A data-transformation engine based around

XML called MS BizTalk Server
, eSecurity and Acceleration Server
, A server for accessing legacy systems such

as AS/400, called Host Integration Server
, Mobile Information Server

■NET S ervices
NET includes certain concepts that extend be­

yond the details of programming to describe how
systems should be built and how they can inter­
act. One such key concept is the idea of Web
Services, functionality delivered in a consistent
fashion over the Internet. These services enable a
company to supply functionality so that the execu­
tion of the functionality is completely contained
within their environment. An example is a bill-pay­
ment service through which the company can
handle bill-payment. The company in addition can
provide this bill-payment service to other compa­
nies as well through a Web Service. One interest­
ing feature of Web Service is that it can be written
on any operating system and in any programming
language. Web Services not only allows two pro­
grams to communicate over the Internet, they also
allow one program to combine information from
multiple Web Services into a single application,
potentially increasing the value of the data. Web
Services communicate with one another and with
clients using standard Internet protocols. They can
use the common HTTP protocol. Alternatively, a
Web Service can use the SOAP (Web Service
Wire Format) to communicate with a client or other
service. Using SOAP allows the communication
to be richer because SOAP allows for objects to
be passed between the two applications, whereas
HTTP does not. The messages (or methods)
supported by a Web Service is described by a Web
Service Description Language (WSDL). A particu­
lar Web Service is identified by a Web Service Dis­
covery (DISCO) file. It defines the location of the
WSDL file, the location of the Web Service and
the namespace defining the format of the WSDL
file.

, .NET D evices
•NET devices refer to a wide range of systems

that allows to gain access to the Internet, to a com­
pany network or to personal information. These
include PCs, TV-based terminals, thin clients, or
Personal Digital Assistants (PDAs). These devices
can be classified as a combination of hardware
and software features designed to work with .NET
based services and applications. Currently, com­
puters running Windows (Windows 9x, Mil'enium

Edition, and the Windows 2000 with the .NET
framework installed) and devices running Win­
dows CE fall in this category.

• .NET C om ponents
A component is a compiled library of

classes that can be referenced and used by other
programs. It may be of two types: i) Managed and
ii) Unmanaged. For proper usage of a managed
component, a particular component must be
registered in the Windows system registry. How­
ever, the .NET components also known as
assemblies do not have to be entered into the
system registry. This is because of the fact that a
.NET assembly files encapsulate their own infor­
mation in special sections known as manifests.
The Common Language Runtime (CLR) allows
developers to specify the specific version of a
component, thus preventing any version conflicts.
Since CLR supports side-by-side execution, it
allows for the execution of code from two similar
components that only differ in version.

Any code that runs outside of the Common
Language Runtime (CLR) is known as
unmanaged code. This includes all COM
(Component Object Model) components, Active
X controls, and any calls to the native Win32 API.
The COM components have no concept of
metadata associated with them. There is a
separate type library file that functions like assem­
bly metadata, but it is part of a separate file and
not related in any way to the component itself. To
build the metadata for a COM component so that
it can be used within the .NET framework a tool
called the Type Library Importer (Tlblmp) is used.
It uses the component’s type library to create the
metadata. Once the assembly is created using
Tlblmp, the COM component is like any other .NET
component. A new instance of it can be created.
Its methods and properties can be called. The
parameters are converted from COM data types
to the CLR data types. When calling the compiler,
a /r: parameter is added to the compiler call that
points to the DLL created by Tlblmp. When the
application is deployed, you have to take one ad­
ditional step beyond the XCOPY deployment that
is supported by the .NET Framework. Just as a

COM component being used in .NET needs to have
metadata created for it, a .NET component being
used within COM needs to be properly registered
in order to work.
. Memory Management
Memory management techniques are more
versatile in a NET framework. Allocation and de­
allocation of objects have been made simpler. The
CLR can allocate nearly 10 million objects per
second on a moderately fast machine. The Garbage
Collector (GC) is responsible for removing objects
from the Managed heap that are no longer
referenced. The GC may be automatically invoked
by the CLR. The GC helps resolve many of the
memory leak problems we are plagued with today.
An object will be Garbage Collected automatically
once it is loses scope.
• Hardware Requirements

For proper functioning of .NET framework, a PC
with the following configuration is required.
,• Pentium II ^50 MHz or equivalent

. 128 MB RAM
, Video card capable of 800x600, 256 colors
, 1 GB hard disk space
• Software Requirements

To run Visual Studio .NET, the following basic
system specifications need to be met.
• Operating system: Windows XP Professional,

Windows 2000 (Datacenter Server, Advanced
Server, Server or Professional) or Windows NT
4.0 Server
In addition, the installation package of Visual

Studio .NET installs the following software and takes
care of any other software upgradation.
, Internet Explorer 6.0
, Updated Data Access Tools
References:

1. Mackenzie D. and Sharkey K., Visual Basic
.NET in 21 days, Sams publishing, 1®' ed.
2002.

2. http://msdn.microsoft.com/dotnet

Windows Tips & Tricks: You can insert tables in MS WORD even if your mouse is not functioning
along with the Alt and the Tab keys. Just type the following sequence on the place where you want to
insert the table: +------ +------ +------ +------ + and then press enter. Isn’t it simple? Send feedback to
siddhartha@kucse.wb.nic.in

http://msdn.microsoft.com/dotnet
mailto:siddhartha@kucse.wb.nic.in

