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1. Introduction

After a long time since the development of computing 
devices and computing techniques, computer scientists 
turned their attention to borrow ideas from nature and 
naturally occuning events in orderto attain the supreme 
power of nature, at least partially. It is observed that 
rules of nature are unanimously applicable to all 
nature directed events. These rules are so firm that 
any departure from them may cause great chaos. The 
algorithms that nature follows always try to converge 
to the most stable states only. When in any natural 
system, this stability is disrupted artificially, the nature 
never fails to bring back the earlier stable conditions. 
Nature always tries to maintain a perfect balance 
among its creatures so that the biological ecosystem 
is properly maintained. Nature always wants its 
creatures to be the fittest for the environment. It 
passes them through the algorithms of adaptation and 
evolution. Nature is always kind to its creatures and it 
always applies its supreme power for their betterment. 
Since human beings are the most matured creatures 
of nature, they gained power to learn the rules of 
nature and apply those rules to their lives. Most of the 
secrets of nature are no longer that much secret to the 
human being as they were thousands of years ago. 
Man gained scientific knowledge from natural events 
and applied it for development. The idea of genetic 
survival of the fittest has been simulated in the extremely 
powerful optimization technique called the Genetic 
Algorithm. In the last half century period, almost all 
efforts in developing problem solving systems are 
oriented towards the use of any of the above mentioned 
artificially simulated natural events. In this article we 
shall look first at the history of the development of 
Genetic Algorithm and then learn how to write an 
evolution program and how it works.

2. Genetic Algorithm: Brief history of development

Genetic Algorithms (GAs) are randomized search

methods that work upon the principle of biological 
evolution processes discovered by Charles Danwin in 
1859. The famous scientist observed the natural 
evolution processes in animals of the world and 
developed his theory on Survival o f the Fittestthrough 
generations. The idea that a child inherits the parental 
characteristics, is discovered by another famous 
scientist Gregor Johann Mendel, known as the Father 
of Genetics, in 1865. He devised the checker-board 
logic to explain exchange of genetic substances lying 
in chromosomes and proved it experimentally. 
Mendelian laws became known to the scientists only 
after they were rediscovered in 1900 by Heugo De 
Vries. T. Morgan and his collaborators completed the 
theory of genetics. In 1920, it was proved that Mendel's 
law of genetics and Danvin’s theory of natural selection 
are supplementary to each other and both of them 
occur naturally for every sexually reproducing 
organisms. The genetic algorithm that we use today is 
developed by mixing the phenomena of genetic 
exchange and biological evolution. The algorithm has 
been proposed by John Holland in 1975 in his book on 
“Adaptation in Neural and Artificial Systems".

3. Basics of Genetic Aigorithm

GAs perform guided random searchin large multimodal 
search space in orderto provide the optimal or a near 
optimal solution (the limitation that only a near optimal 
solution is guaranteed is due to the fact that this is a 
probabilistic algorithm). The value of the objective 
function is defined in terms of the parameters defining 
the problem space. Unlike the conventional search 
methods, GAs deal with multiple representative 
solutions simultaneously. GAs are found to provide 
near optimal solutions in various fields of applications 
e.g., pattern recognition, image processing, machine 
learning, VLSI design etc.

To use GA to solve a problem, initially a set of 
representative solutions are generated randomly or by 
using domain specific knowledge. This set of solutions
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The fitness of a chromosome is computed as the value 
of a predefined fitness function. In general every 
optimization problem uses the objective function as 
the fitness function. Let A and B be two strings and f̂  
and f® are values of the objective function f. If f* > f®, 
then the former string or chromosome is a fitter 
candidate than the latter.

is called the initial population. Each member of this 
population is called a chromosome which is coded as 
a binary string of finite length. The binary string is 
generally a concatenation of the binary encoded 
parameters of the objective function. A collection of 
chromosomes or solution strings is called a population.
We start with an initial population of size P. In each 
iteration of the algorithm, a new population of the same 
size is generated from the current population using 
two basic operations. These two operations are 
selection and reproduction. Reproduction is a 
combination of the genetic operators i.e., cross-over 
and mutation.
In the elitist model of the G A, adopted in this article, the 
best string obtained in the current iteration is copied 
into the population for the next iteration.

String Representation:
In an implementation, we can use a chromosome 
structure that will represent a particular solution of the 
problem. Each string or chromosome will be of length 
n, where n is the number of variables whose optimal 
values will determine the optimal value forthe objective 
function. For example, S ={ x1, x2,x3,x4,x5,x6,x7,x8) 
is a string of eight variables.

Initial Population:
A set of P solutions is generated randomly and taken 
as the initial population. The length of each 
chromosome is fixed and is equal to the number of 
variables. In this generation process care is taken so 
that values of all the variables must lie within the 
specific ranges i.e., any variable xi should be selected 
in such a way so that x,"’'" < xi x If in the random 
generation process any string does not satisfy the 
above condition, it is rejected and a new string is 
generated. Information regarding the values of x,"*’ 
and x,™* are obtained frorp the problem specification. Crossover;

Fitness evaluation:

Selection:

The selection operation mimics the survival of the 
fittest concept of natural genetic systems. The 
chromosomes that possess better fitness value will 
have higher probability of appearing in the population 
for the next generation. For selection, we used the 
roulette wheel strategy which ensures that the 
probability of selection of the fittest candidate will be 
the maximum.

Consider the above figure. If we rotate the wheel, the 
probability that the wheel comes to a stable state with 
the arrowhead pointing to any marked region on the 
wheel is determined by the percentage of area covered 
by that region. Similarly, in the selection scheme if the 
sum total of fitness of all the strings be represented by 
the total area of the wheel, where the marked areas 
represent the fitness of individual strings, then the 
probability of their selection depends on their fitness 
values.

Crossoverexchanges information between two parent 
strings and generates two offsprings for the next 
population. A pair of chromosomes is selected 
randomly from the parent population pool and crossover 
is performed. We have selected the single point cross
over, where the gene position at which a chromosome 
may be fragmented is random. This will provide the 
maximum possible cover in the search space. Let the



two parent chromosomes be P = {x„ x̂ , x,3 x̂  x̂  x̂  
x^and P ={x, x,j,Xj3X^XjsX x̂,,x,3}. Now if the randomly 
generated crossover position be 5 then after crossover 
Pi and P| will be replaced in the new pool by: C,= {x̂ Xij
^13 ^14 ^i5 ^)6 ^17 ^18^ “  {^ j1 ’ ^i2 ’ ^ |3 ’ ^ j4 ’ ^ S ’ ^I6’ ^ 7 ’ ^18^'
There may arise one problem inthe crossover process. 
The child may have fewer groups than the parents. If 
this occurs then we should reject the child by any other 
member of the child pool already generated or by a 
fresh string generated using the initial population 
generation technique. One can also attempt the 
crossover process fora number of times until a suitable 
child is generated or may select any of the parents to 
be copied in the child pool.

Example of crossover:

String A: 10001] 00110110101000111

strings: 11111|1111000011111101

If crossover point is the fifth gene from the left, then 
after crossover we get two offsprings as:

String A’: 10001111110000111111101

String S’: 11111100110110101000111

Mutation:
By mutation, we can alter the value at any arbitrary 
gene position. Every gene position will have the equal 
probability of undergoing this kind of changes. A new 
string is generated from the old one by the mutation 
process. Since invalid strings can be generated in this 
process too, we should keep a step for checking as is 
done in the crossover phase.
The mutation process introduces some extra variability 
into the population. Even if it is performed with a very 
low probability, it has an important role in the generation 
process. Any accidental loss of information due to 
crossover may be recovered by this process.

Example of mutation:
String A: 1000100110110101000111
If mutation point is the sixth gene from the left then 
after mutation we get the new string as:
String A’: 1000110110110101000111
Elitist strategy: Using this strategy we can preserve

the best information obtained thus far in the generation 
process. This is implemented in the following manner. 
We copy the best string in the current pool to the worst 
string in the child pool. In this way we can avoid any 
loss of information. This also ensures a faster 
convergence to the global solution.

4. Basic parameters and operators of Genetic 
Aigorithm

For every GA procedure there are a number of 
parameters. Some of the parameters are objective 
parameters, which in the coded form represent one of 
the infinitely different solutions. The target is to find out 
the best possible representative solution maintained 
by a finite sized population. The value of the objective 
function for a particular solution is determined by the 
corresponding parameter values.
Other parameters are called strategic parameters, 
which are related to the degree and rate of convergence 
of the algorithm itself. These parameters include 
population size, tournament size, crossover probability, 
mutation probability, maximum generations etc.
In GA we maintain a fixed population size. Each 
member of the population is called a chromosome. 
Normally, initial population is generated randomly and 
in some cases domain specific knowledge is applied 
to generate them. The chromosome is generally a 
concatenation of the encoded parameters values. 
Encoding is done in binary for basic GA. However, 
other symbolic or numeric values are possible for EP 
( Evolution Programs).
The selection operator is responsible for the selection 
of the fittest candidates(chromosomes) of the current 
generation (g) in the population to be represented in 
the next generation (g+1). Obviously the selection 
depends on their figure of merit over the fitness of the 
chromosome to optimize the objective function. The 
selection operator selects a chromosome from the 
current population by using a probabilistic function p(.). 
The probability of selection of the i*" chromosome is

p(X,) = F(X,)/F(X ,)

Where, F(X|) = fitness of the i*̂  chromosome. This kind 
of selection scheme is called proportionate selection 
or the roulette wheel selection strategy.



By crossover, features of two selected mates from the 
parent population are intermixed and this enriches the 
next generation by generating newer chromosome 
patterns called child. If chromosomes are of fixed 
length L, then we can select the crossover point to be 
the r"' position in the gene patterns, where 1 < r < L, 
which is generally randomly selected. This type of 
cross-over is called single point cross-over. This is 
done with a certain cross-over probability, P̂ . The 
value of is selected from the range (0-1). Note that 
L = n X gene-size. Gene-size is the number of bits to 
represent a gene position in the chromosome.

Mutation is another operator in GA which is having no 
less significance than the crossover and selection 
operators. It is needed as a fine tuning operator. It 
makes minor changes to a chromosome so that any 
chance of not reaching the global solution is removed. 
Generally the mutation probability P  ̂is kept very low, 
in the range of (0-0.5). The mutation operator may 
operate in different ways. In the binary representation 
for chromosomes, it generally toggles one or more bit 
position(s). For other representations, it works 
differently but its role is to make minor changes to the 
chromosome patterns. In case of real representation 
of chromosomes, generally Gaussian distribution 
function is used to update a gene. In GA, the mutation 
operator acts as a background operator and is typically 
used to recover lost patterns.

Thus using the above three operators, we can get a 
new population P(g+I) from the current population 
P(g). This process is repeated till some stopping 
criteria is satisfied. The basic GA is listed in Fig 2.

5. The Algorithm

begin
g = 0
initialize P(g) 
evaluate P(g)

termination_condition = false 
while termination_condition = false do 

begin 
9=9+1
selects parents from P(g) 
crossover 
mutation 
evaluate P(9+l) 

end 
end

Figure 2. The basic genetic algorithm

6. Powers and weaknesses of Genetic Algorithm

The major strength of GA is its wide applicability. 
Scientists and researchers in various fields of science 
and technology are using it without demur. It is found 
that the softwares based on GA perform much better 
than other commercially available softwares. Another 
strong point is its inherent parallelism. It can process 
a number of representative solutions at the same time 
and this is the secret that starting with a number of 
completely random configurations it can reach a very 
stable solution within a reasonable time. Goldberg 
said in his book on Genetic Algorithms in Search, 
Optimization and Machine Learning that:

“In a world where serial algorithms are usually made 
parallel through countless tricks and contortions, it is 
no small irony that genetic algorithms (highly parallel 
algorithms) are made serial through equally unnatural 
tricks and turns.”

GAs are perceived as weak methods because of its 
lack of general applicability to all kinds of problems. 
However, in presence of nontrivial constraints they 
change rapidly into strong methods. We must go far 
beyond the present scenario to frame the GA as a 
great general problem solver. Continuous efforts of 
scientists and researchers in this direction are revealing 
newer and newer paths to reach this goal.

I  can only show you the door, Neo.
You have to walk through it.

—  Morpheus to Neo, The Matrix


