
The power of Genetic Algorithm
Malay Kumar Pakhira*

1. Introduction

After a long time since the development of computing
devices and computing techniques, computer scientists
turned their attention to borrow ideas from nature and
naturally occuning events in orderto attain the supreme
power of nature, at least partially. It is observed that
rules of nature are unanimously applicable to all
nature directed events. These rules are so firm that
any departure from them may cause great chaos. The
algorithms that nature follows always try to converge
to the most stable states only. When in any natural
system, this stability is disrupted artificially, the nature
never fails to bring back the earlier stable conditions.
Nature always tries to maintain a perfect balance
among its creatures so that the biological ecosystem
is properly maintained. Nature always wants its
creatures to be the fittest for the environment. It
passes them through the algorithms of adaptation and
evolution. Nature is always kind to its creatures and it
always applies its supreme power for their betterment.
Since human beings are the most matured creatures
of nature, they gained power to learn the rules of
nature and apply those rules to their lives. Most of the
secrets of nature are no longer that much secret to the
human being as they were thousands of years ago.
Man gained scientific knowledge from natural events
and applied it for development. The idea of genetic
survival of the fittest has been simulated in the extremely
powerful optimization technique called the Genetic
Algorithm. In the last half century period, almost all
efforts in developing problem solving systems are
oriented towards the use of any of the above mentioned
artificially simulated natural events. In this article we
shall look first at the history of the development of
Genetic Algorithm and then learn how to write an
evolution program and how it works.

2. Genetic Algorithm: Brief history of development

Genetic Algorithms (GAs) are randomized search

methods that work upon the principle of biological
evolution processes discovered by Charles Danwin in
1859. The famous scientist observed the natural
evolution processes in animals of the world and
developed his theory on Survival o f the Fittestthrough
generations. The idea that a child inherits the parental
characteristics, is discovered by another famous
scientist Gregor Johann Mendel, known as the Father
of Genetics, in 1865. He devised the checker-board
logic to explain exchange of genetic substances lying
in chromosomes and proved it experimentally.
Mendelian laws became known to the scientists only
after they were rediscovered in 1900 by Heugo De
Vries. T. Morgan and his collaborators completed the
theory of genetics. In 1920, it was proved that Mendel's
law of genetics and Danvin’s theory of natural selection
are supplementary to each other and both of them
occur naturally for every sexually reproducing
organisms. The genetic algorithm that we use today is
developed by mixing the phenomena of genetic
exchange and biological evolution. The algorithm has
been proposed by John Holland in 1975 in his book on
“Adaptation in Neural and Artificial Systems".

3. Basics of Genetic Aigorithm

GAs perform guided random searchin large multimodal
search space in orderto provide the optimal or a near
optimal solution (the limitation that only a near optimal
solution is guaranteed is due to the fact that this is a
probabilistic algorithm). The value of the objective
function is defined in terms of the parameters defining
the problem space. Unlike the conventional search
methods, GAs deal with multiple representative
solutions simultaneously. GAs are found to provide
near optimal solutions in various fields of applications
e.g., pattern recognition, image processing, machine
learning, VLSI design etc.

To use GA to solve a problem, initially a set of
representative solutions are generated randomly or by
using domain specific knowledge. This set of solutions

* Lecturer, Department of Computer Science and Technology

The fitness of a chromosome is computed as the value
of a predefined fitness function. In general every
optimization problem uses the objective function as
the fitness function. Let A and B be two strings and f̂
and f® are values of the objective function f. If f* > f®,
then the former string or chromosome is a fitter
candidate than the latter.

is called the initial population. Each member of this
population is called a chromosome which is coded as
a binary string of finite length. The binary string is
generally a concatenation of the binary encoded
parameters of the objective function. A collection of
chromosomes or solution strings is called a population.
We start with an initial population of size P. In each
iteration of the algorithm, a new population of the same
size is generated from the current population using
two basic operations. These two operations are
selection and reproduction. Reproduction is a
combination of the genetic operators i.e., cross-over
and mutation.
In the elitist model of the G A, adopted in this article, the
best string obtained in the current iteration is copied
into the population for the next iteration.

String Representation:
In an implementation, we can use a chromosome
structure that will represent a particular solution of the
problem. Each string or chromosome will be of length
n, where n is the number of variables whose optimal
values will determine the optimal value forthe objective
function. For example, S ={ x1, x2,x3,x4,x5,x6,x7,x8)
is a string of eight variables.

Initial Population:
A set of P solutions is generated randomly and taken
as the initial population. The length of each
chromosome is fixed and is equal to the number of
variables. In this generation process care is taken so
that values of all the variables must lie within the
specific ranges i.e., any variable xi should be selected
in such a way so that x,"’'" < xi x If in the random
generation process any string does not satisfy the
above condition, it is rejected and a new string is
generated. Information regarding the values of x,"*’
and x,™* are obtained frorp the problem specification. Crossover;

Fitness evaluation:

Selection:

The selection operation mimics the survival of the
fittest concept of natural genetic systems. The
chromosomes that possess better fitness value will
have higher probability of appearing in the population
for the next generation. For selection, we used the
roulette wheel strategy which ensures that the
probability of selection of the fittest candidate will be
the maximum.

Consider the above figure. If we rotate the wheel, the
probability that the wheel comes to a stable state with
the arrowhead pointing to any marked region on the
wheel is determined by the percentage of area covered
by that region. Similarly, in the selection scheme if the
sum total of fitness of all the strings be represented by
the total area of the wheel, where the marked areas
represent the fitness of individual strings, then the
probability of their selection depends on their fitness
values.

Crossoverexchanges information between two parent
strings and generates two offsprings for the next
population. A pair of chromosomes is selected
randomly from the parent population pool and crossover
is performed. We have selected the single point cross
over, where the gene position at which a chromosome
may be fragmented is random. This will provide the
maximum possible cover in the search space. Let the

two parent chromosomes be P = {x„ x̂ , x,3 x̂ x̂ x̂
x^and P ={x, x,j,Xj3X^XjsX x̂,,x,3}. Now if the randomly
generated crossover position be 5 then after crossover
Pi and P| will be replaced in the new pool by: C,= {x̂ Xij
^13 ^14 ^i5 ^)6 ^17 ^18^ “ {^ j1 ’ ^i2 ’ ^ |3 ’ ^ j4 ’ ^ S ’ ^I6’ ^ 7 ’ ^18^'
There may arise one problem inthe crossover process.
The child may have fewer groups than the parents. If
this occurs then we should reject the child by any other
member of the child pool already generated or by a
fresh string generated using the initial population
generation technique. One can also attempt the
crossover process fora number of times until a suitable
child is generated or may select any of the parents to
be copied in the child pool.

Example of crossover:

String A: 10001] 00110110101000111

strings: 11111|1111000011111101

If crossover point is the fifth gene from the left, then
after crossover we get two offsprings as:

String A’: 10001111110000111111101

String S’: 11111100110110101000111

Mutation:
By mutation, we can alter the value at any arbitrary
gene position. Every gene position will have the equal
probability of undergoing this kind of changes. A new
string is generated from the old one by the mutation
process. Since invalid strings can be generated in this
process too, we should keep a step for checking as is
done in the crossover phase.
The mutation process introduces some extra variability
into the population. Even if it is performed with a very
low probability, it has an important role in the generation
process. Any accidental loss of information due to
crossover may be recovered by this process.

Example of mutation:
String A: 1000100110110101000111
If mutation point is the sixth gene from the left then
after mutation we get the new string as:
String A’: 1000110110110101000111
Elitist strategy: Using this strategy we can preserve

the best information obtained thus far in the generation
process. This is implemented in the following manner.
We copy the best string in the current pool to the worst
string in the child pool. In this way we can avoid any
loss of information. This also ensures a faster
convergence to the global solution.

4. Basic parameters and operators of Genetic
Aigorithm

For every GA procedure there are a number of
parameters. Some of the parameters are objective
parameters, which in the coded form represent one of
the infinitely different solutions. The target is to find out
the best possible representative solution maintained
by a finite sized population. The value of the objective
function for a particular solution is determined by the
corresponding parameter values.
Other parameters are called strategic parameters,
which are related to the degree and rate of convergence
of the algorithm itself. These parameters include
population size, tournament size, crossover probability,
mutation probability, maximum generations etc.
In GA we maintain a fixed population size. Each
member of the population is called a chromosome.
Normally, initial population is generated randomly and
in some cases domain specific knowledge is applied
to generate them. The chromosome is generally a
concatenation of the encoded parameters values.
Encoding is done in binary for basic GA. However,
other symbolic or numeric values are possible for EP
(Evolution Programs).
The selection operator is responsible for the selection
of the fittest candidates(chromosomes) of the current
generation (g) in the population to be represented in
the next generation (g+1). Obviously the selection
depends on their figure of merit over the fitness of the
chromosome to optimize the objective function. The
selection operator selects a chromosome from the
current population by using a probabilistic function p(.).
The probability of selection of the i*" chromosome is

p(X,) = F(X,)/F(X ,)

Where, F(X|) = fitness of the i*̂ chromosome. This kind
of selection scheme is called proportionate selection
or the roulette wheel selection strategy.

By crossover, features of two selected mates from the
parent population are intermixed and this enriches the
next generation by generating newer chromosome
patterns called child. If chromosomes are of fixed
length L, then we can select the crossover point to be
the r"' position in the gene patterns, where 1 < r < L,
which is generally randomly selected. This type of
cross-over is called single point cross-over. This is
done with a certain cross-over probability, P̂ . The
value of is selected from the range (0-1). Note that
L = n X gene-size. Gene-size is the number of bits to
represent a gene position in the chromosome.

Mutation is another operator in GA which is having no
less significance than the crossover and selection
operators. It is needed as a fine tuning operator. It
makes minor changes to a chromosome so that any
chance of not reaching the global solution is removed.
Generally the mutation probability P ̂is kept very low,
in the range of (0-0.5). The mutation operator may
operate in different ways. In the binary representation
for chromosomes, it generally toggles one or more bit
position(s). For other representations, it works
differently but its role is to make minor changes to the
chromosome patterns. In case of real representation
of chromosomes, generally Gaussian distribution
function is used to update a gene. In GA, the mutation
operator acts as a background operator and is typically
used to recover lost patterns.

Thus using the above three operators, we can get a
new population P(g+I) from the current population
P(g). This process is repeated till some stopping
criteria is satisfied. The basic GA is listed in Fig 2.

5. The Algorithm

begin
g = 0
initialize P(g)
evaluate P(g)

termination_condition = false
while termination_condition = false do

begin
9=9+1
selects parents from P(g)
crossover
mutation
evaluate P(9+l)

end
end

Figure 2. The basic genetic algorithm

6. Powers and weaknesses of Genetic Algorithm

The major strength of GA is its wide applicability.
Scientists and researchers in various fields of science
and technology are using it without demur. It is found
that the softwares based on GA perform much better
than other commercially available softwares. Another
strong point is its inherent parallelism. It can process
a number of representative solutions at the same time
and this is the secret that starting with a number of
completely random configurations it can reach a very
stable solution within a reasonable time. Goldberg
said in his book on Genetic Algorithms in Search,
Optimization and Machine Learning that:

“In a world where serial algorithms are usually made
parallel through countless tricks and contortions, it is
no small irony that genetic algorithms (highly parallel
algorithms) are made serial through equally unnatural
tricks and turns.”

GAs are perceived as weak methods because of its
lack of general applicability to all kinds of problems.
However, in presence of nontrivial constraints they
change rapidly into strong methods. We must go far
beyond the present scenario to frame the GA as a
great general problem solver. Continuous efforts of
scientists and researchers in this direction are revealing
newer and newer paths to reach this goal.

I can only show you the door, Neo.
You have to walk through it.

— Morpheus to Neo, The Matrix

