Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

On The Properties of Generalized k-Pell Like Sequence


Affiliations
1 Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India
     

   Subscribe/Renew Journal


The Pell sequence has been generalized in many ways, some by preserving the initial conditions, others by preserving the recurrence relation. In this paper, we define a new generalization {π‘€π‘˜,𝑛}𝑛=1∞, with initial conditions π‘€π‘˜,0=2,π‘€π‘˜,1=π‘š+2, which is generated by the recurrence relation π‘€π‘˜,𝑛+1=2π‘€π‘˜,𝑛+π‘˜π‘€π‘˜,π‘›βˆ’1, for 𝑛β‰₯1, where π‘˜,π‘š are integer numbers. We produce an extended Binet’s formula for π‘€π‘˜,𝑛 and thereby the identities such as Catalan’s, Simpson’s, d’ Ocagene’s etc.

Keywords

k-Pell Sequence, k- Pell-Lucas Sequence, Recurrence Relation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • N. Bicknell, A primer on the Pell sequence and related sequence, The Fibonacci Quarterly, 13 (4) (1975), 345-349.
  • A. Dasdemir, On the Pell, Pell-Lucas and Modified Pell Numbers by Matrix Method, Applied Mathematical Sciences, 5(64) (2011), 3173-3181.
  • J. Ercolano, Matrix generators of Pell sequences, The Fibonacci Quarterly, 17 (1) (1979), 71-77.
  • S. Halici, Some sums formulae for products of terms of Pell, Pell-Lucas and Modified Pell sequences, SAαΉΊ. Fen BillimleriDergisi, 15, Cilt, 2, SayΔ±, (2011), 151-155.
  • A.F. Horadam, Applications of Modified Pell Numbers to Representations, Ulam Quarterly, 3 (1) (1994), 34-53.
  • A. F. Horadam, Pell identities, The Fibonacci Quarterly, 9 (3) (1971), 245-252.
  • P. Catarino, A note involving two-by-two matrices of the k-Pell and k-Pell-Lucas sequences, International Mathematical Forum, 8 (32) (2013), 1561-1568.
  • P. Catarino, On Generating Matrices of the k-Pell-Lucas, k-Pell-Lucas and Modified k-Pell Sequences, Pure Mathematical Sciences, 3(2) (2014), 71 – 77.
  • P. Catarino, On some identities and generating functions for k-Pell numbers, International Journal of Mathematical Analysis, 7 (38) (2013), 1877-1884.
  • P. Catarino, P. Vasco, On some Identities and Generating Functions for k-Pell-Lucas sequence, Applied Mathematical Sciences, 7 (98) (2013), 4867-4873.
  • P. Catarino, P. Vasco, Some basic properties and a two-by-two matrix involving the k-Pell Numbers, International Journal of Mathematical Analysis, 7 (45) (2013), 2209-2215.
  • Pankaj, Some New Determinantal Identities of k-Pell Sequences, Journal of Combinatorics, Information & System Sciences (JCISS), 41(4) (2016), 207-213.
  • K. Uslu, F. Yildirim, The Properties of Generalized k-Pell like Sequence using Matrices, Asian Journal of Applied Sciences, 4 (2) (2016), 453-457.
  • A. Feng, Fibonacci identities via determinant of tridiagonal matrix, Applied Mathematics and Computation, 217 (2011), 5978-5981.
  • S. Falcon, On the generating matrices of the k-Fibonacci numbers, Proyecciones Journal of Mathematics, 32 (4) (2013), 347-357.
  • S. Falcon, and A. Plaza, On the k-Fibonacci numbers, Chaos, Solitons and Fractals, 5(32) (2007), 1615-1624.
  • A. D. Godase, and M. B. Dhakne, On the Properties of Generalized k-Fibonacci like Sequence, Indian Journal in Number Theory, 1 (2014), 1-10.
  • A. D. Godase, and M. B. Dhakne, On the Properties of Generalized k-Fibonacci like Sequence using Matrices, Indian Journal in Number Theory, 1 (2014), 11-16.
  • A. D. Godase, Some New Properties for k-Fibonacci and k-Lucas Numbers using Matrix Methods, Researchgate Pub., (2015), DOI: 10.13140/RG.2.1.1734.6727.
  • A. D. Godase, and M. B. Dhakne, On the properties of k-Fibonacci and k-Lucas numbers, International Journal of Advances in Applied Mathematics and Mechanics, 2(1) (2014), 100-106.
  • A. D. Godase, and M. B. Dhakne, Summation Properties of Generalized k-Fibonacci like Sequence, Indian Journal in Number Theory, 1 (2015), 1-13.
  • T. Koshy,Fibonacci and Lucas numbers with applications, Wiley-Intersection Pub.(2001).
  • Pankaj, On the Properties of k-Jacobsthal and k-Jacobsthal-Lucas Numbers,The Journal Of The Indian Academy of Mathematics, 39(1) (2017), 49-58.
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section: Theory and applications, Chichester: Ellis Horwood, 1989.

Abstract Views: 469

PDF Views: 0




  • On The Properties of Generalized k-Pell Like Sequence

Abstract Views: 469  |  PDF Views: 0

Authors

Pankaj
Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India

Abstract


The Pell sequence has been generalized in many ways, some by preserving the initial conditions, others by preserving the recurrence relation. In this paper, we define a new generalization {π‘€π‘˜,𝑛}𝑛=1∞, with initial conditions π‘€π‘˜,0=2,π‘€π‘˜,1=π‘š+2, which is generated by the recurrence relation π‘€π‘˜,𝑛+1=2π‘€π‘˜,𝑛+π‘˜π‘€π‘˜,π‘›βˆ’1, for 𝑛β‰₯1, where π‘˜,π‘š are integer numbers. We produce an extended Binet’s formula for π‘€π‘˜,𝑛 and thereby the identities such as Catalan’s, Simpson’s, d’ Ocagene’s etc.

Keywords


k-Pell Sequence, k- Pell-Lucas Sequence, Recurrence Relation.

References