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Abstract 

Serine Protease Inhibitor Kazal-type 5 (SPINK5) gene encodes 3 different Lympho-

Epithelial Kazal-Type-Inhibitor (LEKTI) isoforms, which differ in their C-terminal 

sequence, are organized into longer than 15, 15, and 13 inhibitory domains. Pro-LEKTI is 

processed intracellular and the bioactive LEKTI fragments are secreted.  LEKTI shows a 

restricted expression pattern in skin, thymus, oral mucosa, vaginal epithelium, Bartholin's 

glands, pituitary, tonsils, and parathyroid glands. Recombinant full-length LEKTI and 

rLEKTI fragments inhibit the activity of plasmin, subtilisin A, cathepsin G, neutrophil 

elastase, trypsin, caspase 14, and kallikreins (KLK) 5, 6, 7, 13, and 14 (involved in skin 

desquamation and  growth hormone  processing) to varied extents.  Loss-of-function 
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mutations, polymorphisms, and transcriptional inactivation of the cognate SPINK5 gene 

resulting in LEKTI loss or defective LEKTI processing is linked to Netherton syndrome 

(NS), head and neck squamous cell carcinomas (HNSCC), asthma, and chronic 

rhinosinusitis.  Here, we give a brief review on the published work of LEKTI. 
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Introduction 

Proteinases are involved in numerous homeostatic and disease processes (1).  Proteinases 

indeed form a deeply interconnected protease web embedded in every tissue proteome 

(2). In this network, natural proteinases inhibitors such as the tissue inhibitors of matrix 

metalloproteases (TIMPs), maspin, elafin, hespin, headpin, SERPINs, SPI, and LEKTI 

are important control points in proteolytic signaling (3-7). The importance of proteinases 

and their endogenous inhibitors in the biology of human cancer is also supported by a 

plethora of data (8-10). Loss-of-function mutations in SPINK5 gene cause Netherton 

syndrome (11-17).  We and others identified SPINK5 as one of the genes downregulated 

in head and neck cancer (18, 19). In this review article, we give a glimpse of the 

published work on the organization, processing and secretion, and pathophysiological 

role of LEKTI. 

 

LEKTI Organization 

Lympho-epithelial kazal-type-inhibitor (LEKTI) was named by one of the original groups 

who cloned this protein’s gene to reflect the observed pattern of its expression in both 

epithelial tissue and leukocytes (20). SPINK5 encodes the LEKTI protein, which consists 

of 1064 amino acids organized into 15 potential inhibitory domains on the basis of the 

furin cleavage sites found within the full-length molecule. Each of the SPINK5 domains 

is slightly different from the others and this suggests that the protein may have polyvalent 

action against multiple substrates. At the N-terminal is a secretory signal peptide 
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sequence consisting of 22 amino acids (21). Two of the 15 LEKTI domains (domains 2 

and 15) resemble typical Kazal-type serine proteinase inhibitors; the remaining 13 

domains share partial homology to Kazal-type inhibitors but lack one of the three 

conserved Kazal-type disulfide bridges (22). However, it was later shown that SPINK5 

indeed generates three classes of transcripts encoding three different LEKTI isoforms, 

which differ in their C-terminal portion (23). Their results discovered that in addition to 

the previously described 15 domain isoform, SPINK5 encodes a shorter LEKTI isoform 

composed of only the first 13 domains, as well as a longer isoform carrying a 30-amino-

acid residue insertion between the 13th and 14th inhibitory domains (Figure 1). To 

investigate the reasons for differences in the folds of the homologous LEKTI domains 1 

and 6 (22), Tidow et al. determined the solution structure of a chimeric domain (Dom1PI) 

from the multidomain Kazal-type serine proteinase inhibitor LEKTI using 

multidimensional NMR spectroscopy (24) and concluded that the secondary structure of 

Dom1PI is determined not only by the local protein sequence but also by nonlocal 

interactions. 

 

LEKTI Processing and Secretion  

Initially LEKTI has been shown to be expressed in differentiated primary human keratinocytes 

(HKs) as two N-glycosylated precursor proteins of 145 and 125 kDa; the latter isoform results 

from alternative processing of the SPINK5 pre-mRNA in HKs (25). Later it was demonstrated 

that in differentiated cultured human keratinocytes SPINK5 encodes not two but three 

transcripts due to alternative splicing and all three transcripts are translated into three LEKTI 

isoforms (longer than 15, 15, and 13). The authors concluded that the alternative processing of 

the SPINK5 pre-messenger RNA represents an additional mechanism to further increase the 

structural and functional diversity of the LEKTI bioactive fragments. We constructed deletion 

mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, 

stability, subcellular distribution, and proteinase inhibitory function. We demonstrated that the 
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N-terminal signal peptide is required for LEKTI import into the ER and ordered  the cleavage 

products on the 125 kDa pro-LEKTI from the amino- to carboxy-terminal as follows: 37-, 40-, 

and 60 kDa (26). This arrangement allowed us to suggest two potential furin cleavage sites, one 

spanning LEKTI residues 352 to 355 and the second one spanning LEKTI residues 678 to 681, 

which are most likely used during LEKTI intracellular processing in vivo. Consistent with our 

proposal, Fortugno et al. identified three processing LEKTI intermediates and quantified the 

individual LEKTI fragments in the uppermost epidermis and showed that the ratios between 

LEKTI polypeptides and active KLK5 are compatible with a fine-tuned inhibition (27). 

Furthermore, the   isolation of three single LEKTI domains (domains 1, 5, and 6) from human 

blood filtrate (28) and one multiple domain (domains 8-12) from primary epidermal HK 

conditioned medium (29) further indicated that LEKTI fragments generated intracellular are 

further cleaved extracellular thus generating a number of potentially bioactive single domain 

and multiple domain LEKTI active fragments. Consistent with this scheme we recently 

identified a broad range of protease inhibitors that are cleaved by meprins including LEKTI, 

implicating meprins in the indirect regulation of KLK activity (30).  Interestingly, it was 

demonstrated a frequent and non-conservative LEKTI variant, E420K, in different atopic 

dermatitis (AD) populations (31, 32) prevents the formation of the LEKTI fragment D6D9 

known to display the strongest inhibitory activity against KLK5-mediated desmoglein-1 

(DSG1) degradation (33).  

 

Pathophysiological Role of LEKTI  

SPINK5 was identified as the defective gene in Netherton syndrome (11). To date, almost 

50 mutations have been identified in the SPINK5 gene in Netherton's patients, all of 

which result in premature termination codons implying defective protein expression 

occurs (17). To study the NS in mouse model, Yang et al. generated a transgenic mouse 

line with an insertional mutation that inactivated the mouse SPINK5 ortholog. Their 

results showed that mutant mice exhibit fragile stratum corneum and perinatal death due  
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to dehydration (34).  Currently, there are no curative treatments for NS. Interestingly, a 

recent paper showed the development of a HIV-1 based, self-inactivating lentiviral vector 

to express SPINK5 in keratinocytes as part of an ex-vivo gene therapy strategy for NS 

(35).  

We identified SPINK5 as one of the genes downregulated in head and neck squamous cell 

carcinoma (HNSCC) and cloned the cDNA encoding the 125-kDa isoform (18). 

Subsequently, we purified human recombinant LEKTI (rLEKTI) using a 

baculovirus/insect cell expression system and examined its inhibitory profile. Our studies 

discovered that rLEKTI inhibited the serine proteinases plasmin, subtilisin A, cathepsin 

G, human neutrophil elastase, and trypsin, but not chymotrypsin. Moreover, rLEKTI did 

not inhibit the cysteine proteinase papain or cathepsin K, L, or S. Further, rLEKTI 

inhibitory activity was inactivated by treatment with 20 mM DTT, suggesting that 

disulfide bonds are important to LEKTI function. The inhibition of plasmin, subtilisin A, 

cathepsin G, elastase, and trypsin by rLEKTI occurred through a noncompetitive-type 

mechanism, with inhibitory constants (Ki) of 27 nM  5, 49 nM  3, 67 nM  6, 317 nM 

36, and 849 nM  55,  respectively (36). In the course of studies aimed at understanding 

the structure and function of different LEKTI domains, we demonstrated that 

recombinant LEKTI6-9´ inhibited trypsin and subtilisin A but not plasmin, cathepsin G, 

or elastase (37). In our subsequent work, we characterized the interaction of two 

recombinant LEKTI fragments containing three or four intact Kazal domains (domains 6-

8 and 9-12) with recombinant rhK5, a trypsin-like protease, and recombinant rhK7, a 

chymotrypsin-like protease (38). We showed that both fragments inhibited rhK5 similarly 

in binding and kinetic studies performed at pH 8.0, as well as pH 5.0, the pH of the 

stratum corneum where both LEKTI and proteases may function. These results 

established that LEKTI, at least in fragment form, is a potent inhibitor of rhK5 and that 

this protease may be a target of LEKTI in human skin.  In our later studies we extended 

our studies to some more KLK members and examined their interactions with different 
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LEKTI fragments (39, 40). Our studies discovered that KLK1 was not inhibited by any 

serine protease inhibitor tested including LEKTI.  However, KLK5, KLK6, KLK13 and 

KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9’) and rLEKTI(9-12) with 

K
i 
values in the range of 2.3-28.4 nM, 6.1-221 nM and 2.7-416 nM for each respective 

fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nM). No KLK was 

inhibited by SLPI or elafin.  We also found out that apart from KLK13, all KLKs 

digested the ectodomain of DSG1 within cadherin repeats, Ca
2+ 

binding sites or in the 

juxtamembrane region. These findings may have clinical implications for the treatment of 

skin disorders in which KLK activity is elevated.  

We also assessed the basis for phenotypic variations in patients with "mild", "moderate", 

and "severe" NS (41).  We observed that the magnitude of KLK activation correlated 

with both the barrier defect and clinical severity, and inversely with residual LEKTI 

expression and LEKTI co-localizes within the stratum corneum (SC) with kallikreins 5 

and 7 and inhibits both KLKs. Collectively Our study indicated that multiple KLKs may 

participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. 

We also showed that KLKs 5, 6 and 14 is involved in proteolytic processing of hGH in 

the pituitary and therefore LEKTI  indirectly  regulates the growth process (42). In an 

attempt to comprehensively identify candidate protease targets of LEKTI, we employed a 

label-free quantitative proteomic approach and cells scraped from the elbow and 

demonstrated that full-length LEKTI and recombinant fragments of LEKTI inhibited 

caspase 14, dermcidin, and cathepsin G (43, 44). A recent paper showed that epithelial 

cells transfected with a variant SPINK5 expression vector produced more IL-6, IL-8 and 

RANTES compared to non-transfected cells and had no effect on MUC5AC transcription 

suggesting that LEKTI exert its effect in atopic diseases and asthma via a non-protease 

inhibitory mechanism (45). The development and licensing of several LEKTI monoclonal 

antibodies by our group now allowed determining the LEKTI protein expression in 

HNSCC tumor tissues. Using LEKTI mAb 1C11G6, we show here that in specimens of  
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histologically normal mucosa, LEKTI-positive staining was present in the cytoplasm of 

epithelial cells extending above the basal layers (Figure 2). Conversely, in specimens of 

dysplastic mucosa, LEKTI-positive staining was diminished in all layers of the 

epithelium. Moreover, in the majority of specimens of invasive carcinoma staining was 

limited to a few cells scattered within the tumor of nests of more differentiated tumor 

cells.  Our immunohistochemical analysis of LEKTI expression in matched patient 

specimens confirmed our previous findings of lost or down-regulated LEKTI mRNA 

transcription in similar specimens (18). 
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