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Abstract 
 
The growth of the blood vessels, smooth muscle tone in the blood vessels, activity of 

platelets, inflammation, fibrinolysis  and coagulation pathway are regulated by factors 

released from endothelium.1, 2 Various factors can affect the endothelial function and promote 

atherosclerosis.3,4  In humans endothelial function is influenced by haemodynamics. Vascular 

endothelial cells act as a signal transduction interface between haemodynamic forces and the 

vascular smooth muscle cells. Steady hemodynamic forces stimulate cellular responses that 

are essential for endothelial cell function and are atheroprotective. Mechanical forces 

influence the development and progression of cardiovascular disease. Alterations in arterial 

structure are common in vascular diseases and are thought to occur primarily by vascular 

remodelling, in response to hemodynamic and vascular biomechanical stimuli.5-7  Endothelial 

dysfunction correlates with disease progression.8  Failure of the endothelium to respond to 

therapies is associated with higher risk.9 The hemodynamic forces directly dictates the 

function, of the endothelial layer. In the past several years, experimental and clinical studies 

have provided new information about the mechanisms and clinical relevance of  

haemodynamics influence on endothelial function. This review is to summarize recent 
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articles that have advanced in understanding the molecular basis of the hemodynamic 

influence on the endothelial function. 
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Introduction 

The endothelium of the circulatory system’s health is essential to normal vascular physiology  
and its dysfunction can be a critical factor in the pathogenesis of vascular disease. The 

involvement of vascular endothelium in disease processes such as atherosclerosis has been 

recognized since the decades. We now appreciate that forces, generated by the pulsatile flow 

of blood can also influence the structure and function of endothelial cells. As the endothelium 

is in direct contact with blood, the endothelium bears the frictional forces imparted by the 

flow. As blood flows through a vessel, it exerts a physical force which generates a stress 

parallel to the vessel wall (shear stress) and a perpendicular stress (tensile stress).  The shear 

stress exerts frictional force on the endothelial surface. The endothelium responds rapidly and 

sensitively to the mechanical conditions created by blood flow.10 Arterial blood flow in 

human is pulsatile hence, the absolute shear stress varies throughout the cardiac cycle. In 

straight parts of the arterial tree wall shear stress is high and directed and in branches and 

curvatures there is irregular distribution and shear stress is low.  Experimental and clinical 

studies have provided new information about how the disturbed haemodynamics in branch 

points and curvatures can be the cause for the preferential localization of atherosclerotic 

lesions and in-stent restenosis. Arterial endothelial cells and venous endothelial cells differ 

both functionally and molecularly. On the molecular level, arterial endothelial cells express 

ephrinB2, whereas venous endothelial cells express EphB4. They are thought to be key 

molecules in the process of arteriovenous differentiation by endothelial cells11,12 and probably 

could be the cause for vein bypass graft failure. Studies have identified hemodynamic shear 

stress as an important determinant of the endothelial cell response to possibly by 

mechanotransducers intermediate signaling molecules, mitogen activated protein kinases and 

nitric oxide.  Shear stress has not only been shown to be a critical determinant of vessel 

caliber,13-15 but has also been implicated in vascular remodeling16,17 and development of 

various vascular diseases, such as hypertension, thrombosis, and arteriosclerosis.18,19 This 

review summarizes the current knowledge on the molecular basis of the endothelium’s ability  
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to sense the shear stress. 

 
Molecular basis of endothelium’s ability to sense shear stress 

The molecular basis of endothelium's ability to sense the shear stress is still remains unclear.  

A number of mechanosensitive biological molecules have been identified, including 

mechanically gated channels (1), receptors (2), G proteins (3), enzymes (4), and cytoskeleton. 

It has been demonstrated that the apical surface of endothelial cells is decorated with various 

membrane-bound macromolecules that constitute the glycocalyx which senses the shear 

stress.20. Ion channels are proposed as possible flow sensors by some of the studies which 

explains the sequence of events as, shear stress cause the K+ flux, initiating transmembrane 

hyperpolarisation which results in Ca2+ entry into the cell.21, 22   The amount of calcium entry 

into the cell which causes release of caveolae-bound endothelial nitric oxide synthase, 23 is in 

turn determined by the magnitude of shear stress.24, 25 Various theories are there on how these 

channels are activated. In a review by Boris Martinac, the author explores the theory of 

cytoskeleton participation in activation of these channels and provides the current best 

evidences supporting the same.26 Mechanotransduction of shear stress is been linked with G-

protein coupled receptors, human B2 bradykinin G protein-coupled receptor  found to 

undergo conformation changes on being stimulated by fluid shear stress.27  The endothelial 

cell responds to shear stress by secreting and releasing various mediators like endothelium 

derived hyperpolarising factor which brings relaxation of the smooth muscles in the blood 

vessel,  as evidenced by various findings.27,28  Some of the recent studies have reported that 

hydrogen peroxide generated from CYP epoxgyenases and xanthine oxidase can act as 

endothelium derived hyperpolarising factor.30, 31  Reactive oxygen species generated from  

nicotinamide adenine dinucleotide phosphate (reduced) oxidase, xanthine oxidase, uncoupled 

endothelium derived Nitric oxide synthase  in response to shear stress is said to be involved 

in flow induced vasodilation.32 – 34  

 

Altered haemodynamics results in endothelial dysfunction 

Coarctation of the aorta is associated with substantial morbidity despite treatment. 

Coarctation of the aorta leads to altered wall shear stress which is said to cause alterations in 

the smooth muscle phenotype expression contributing to structural and functional changes.  
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These changes are not reversed upon blood pressure correction and may serve as markers of 

disease severity, which explains the persistent morbidity observed in coarctation of the aorta 

patients.35 In type II diabetes mellitus the insulin resistance and free fatty acids act directly on 

endothelium derived nitric oxide synthase activity and mitochondrial function. This leads to 

oxidative stress and increase generation of superoxide radicals which affects the vascular tone 

leading to altered haemodynamics predisposing to development of atherosclerosis.36,37  In a 

review by Hua Cai and David G. Harrison, the authors explore the role of the oxidant stress 

involved in the pathogenesis of many cardiovascular diseases, including hypertension, 

hypercholesterolemia, atherosclerosis, diabetes, and heart failure and provides the current 

best evidences supporting the theory of  reactive oxygen species generated in these diseases 

that could potentially inactivate nitric oxide.38 In compensated heart failure the altered 

haemodynamics in the pulmonary artery affects the endothelium derived nitric oxide synthase 

messenger ribonucleic acid expression. This leads to pulmonary endothelial function leading 

to development of pulmonary hypertension.39 Atherosclerosis is lipid accumulation in the 

artery wall resulting from the transendothelial entry of low density lipoprotein, followed by 

its oxidation and uptake by macrophages.40   Local hemodynamic forces play a significant 

role in the focal nature of the lesions,41 by upregulating the expression of sterol regulatory 

element–binding proteins.42 Autologous vein grafts are the most common procedure for the 

reconstruction of arterial occlusive disease in the heart and peripheral circulation, the patency 

of these vein bypass grafts  is still hampered due to the development of intimal hyperplasia. 

Vascular endothelial function of the graft is affected due the altered haemodynamics during 

the transition from venous to arterial flow dynamics.43,44  Evidences suggests that in addition 

to stimulating angiogenesis, modulating various aspects of endothelial cell function may 

reduces intimal hyperplasia and help in preserving and maintaining the graft.45-47 Endothelial 

function is impaired by coronary artery stenting, in-stent restenosis may be due to local factor 

as supported by recent observations of elevated inflammatory marker C-reactive protein, after 

stent implantation.48 The use of drug-eluting stents for coronary artery disease has resulted in 

a reduction of acute vessel closure, but studies have reported that a high rate of in-stent 

restenosis persists, 49 which may be prevented by using Stent-based delivery of AdeNOS 

which enhances endothelial regeneration and reduction in neointimal formation.50,51 
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Conclusion 

The vascular endothelium plays a critical role in the regulation of arterial function through 

the synthesis and release of a number of antiatherogenic factors. Endothelial dysfunction 

results in impairment of normal homeostatic properties of the vasculature which leads to 

vasospastic, prothrombotic, and proinflammatory changes.52   The immense knowledge that 

we have obtained on the endothelial function and the influence of haemodynamics on its  

function, supports the notion that assessment of endothelial function should be integrated into 

our clinical practice. The clinical measurement of endothelial function is challenging, due to 

the complexity of the mechanotransduction of shear stress and heterogeneous functions of 

endothelium. In an editorial by Noyan Gokce, the author has elaborated on many tools 

available for clinical assessment of endothelial function.53 Therapeutic intervention to prevent 

and reversal of endothelial dysfunction has been possible as evidenced by a growing list of 

modulators.54-57  Further studies should be directed at determining which non-invasive test or 

combination of tests of endothelial function may be useful in clinical arena, to guide 

treatment and change outcomes based on different populations. 
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