Open Access Open Access  Restricted Access Subscription Access

Mechanical and Thermophysical Properties of Lutetium Monochalcogenides:An Ultrasonic Study


Affiliations
1 Amity School of Applied Sciences, Amity University Haryana, Manesar-122413, India
2 Department of Applied Physics, Amity School of Engineering & Technology, Bijwasan, New Delhi-110061, India
3 Department of Physics, Gurgaon Institute of Technology & Management, Gurgaon-122413, India
 

The paper presents theoretical temperature dependent mechanical and thermophysical properties of lutetium monochalcogenides using ultrasonic analysis. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential upto second nearest neighbour. The second order elastic constants are used to compute mechanical parameters such as bulk modulus, shear modulus, tetragonal modulus, Poisson's ratio, Zener anisotropy factor and fracture to toughness ratio for finding future performance of the chosen materials at room temperature. The second order elastic constants are further applied to find out the ultrasonic velocities <100>, <110> and <111> crystallographic directions in the temperature range 100-300 K. Finally Debye temperature, ultrasonic Gruneisen parameters and first order pressure derivatives of lutetium monochalcogenides are computed using the second and third order elastic constants. The obtained results are discussed in correlation with available results on these properties for the chosen materials.

Keywords

Lutetium Monochalcogenides, Elastic Properties, Ultrasonic Properties.
User
Notifications
Font Size

  • Nampoothiri J., Sri Harini R., Nayak S.K., Raj B. and Ravi K.R., Post in-situ reaction ultrasonic treatment for generation of Ale4.4Cu/TiB2 nanocomposite: A route to enhance the strength of metal matrix nanocomposites, J. Alloys Compd., 683 (2016) 370-378.
  • Wan M., Yadav R.R., Singh D., Panday M.S. and Rajendran V., Temperature dependent ultrasonic and thermo-physical properties of polyaniline nanofibers reinforced epoxy composites, Composites Part B 87 (2016) 40-46.
  • Vaitheeswaran G., Petit L., Svane A., Kanchana V. and Rajagopalan M., Electronic structure of praseodymium monopnictides and monochalcogenides under pressure, J. Phys.: Condens. Matter, 16 (2004) 4429-4440.
  • Coban C., Colakoglu K. and Ciftci Y.O., First principles predictions on mechanical and physical properties of HoX (X = As, P), Mat. Chem. Phys., 125 (2011) 887-894.
  • Seddik T., Semari F., Khenata R., Bouhemadou A. and Amrani B., High pressure phase transition and elastic properties of lutetium chalcogenide, Physica B 405 (2010) 394-399.
  • Mir S.H., Jha P.C., Islam M.S., Banarjee A., Luo W., Dabhi S.D., Jha P.K. and Ahuja R., Static and dynamical properties of heavy actinide monopnictides of lutetium, Sci. Rep. 6 (2016) 29309.
  • Larson P., Lambrecht W.R.L., Chantis A. and Van Schilfgaarde M., Electronic structure of rare-earth nitrides using the LSDA+U approach: importance of allowing 4f orbitals to break the cubic crystal symmetry, Phys. Rev. B 75 (2007) 045114.
  • Shirotani I., Yamanashi K., Hayashi J., Tanaka Y., Ishimatsu N., Shimomura O. and Kikegawa T., Phase transitions of LnAs (Ln = Pr, Nd, Sm, Gd, Dy and Ho) with NaCl-type structure at high pressures, J. Phys.: Condens. Matter 13 (2001) 1939.
  • Born M. and Mayer J.E., Zür Gittertheorie der Ionenkristalle, Z. Phys. 75 (1931) 1-18.
  • Brugger K., Thermodynamic definition of higher order elastic coefficients. Phys. Rev. 133 (1964) A1611-A1612.
  • Liebfried G. and Haln H., Zur temperaturabhangigkeit der elastischen konstantaaen von alkali halogenidid kristallen, Z. Phys. 150 (1958) 497-525.
  • Bhalla V., Singh D. and Jain S.K., Mechanical and thermophysical properties of cerium monopnictides, Int. J. Thermophys. 37 (2016) 33.
  • Mason W.P. Physical Acoustics. Academic Press, New York, IIIB (1965).
  • Brugger K., Generalized Grüneisen parameters in anisotropic Debye model, Phys. Rev., 137 (1965) A1826-A1827.
  • Lubarda V.A., Apparent elastic constants of cubic crystals and their pressure derivatives, Int. J. Non-Linear Mech. 34 (1999) 5-11.
  • Yadav R.R. and Singh D., Ultrasonic attenuation in lanthanum monochalcogenides, J. Phys. Soc. Jpn., 70 (2001) 1825-1832
  • Bhalla V., Kumar R., Tripathy C. and Singh D., Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study, Int. J. Mod. Phys. B 27, 1350116
  • Verlinden A., Suzuki T., Delaey L. and Guenin G., Third order elastic constant of B-Cu-Zn-Al as a function of the temperature, Script. Met. 18 (1984) 975.
  • Nagasawa A., Makita T. and Takagi Y., Anharmonicity and martensitic phase transition in β-phase alloys, J. Phys. Soc. Jpn. 51(1982) 3876.
  • Kumar J., Kailash, Kumar V. and Chaudhary A.K., Temperature dependence of pressure derivatives of higher order elastic constants of TeO crystal, Asian J. Chem. 23 (2011) 5601-5604.

Abstract Views: 326

PDF Views: 8




  • Mechanical and Thermophysical Properties of Lutetium Monochalcogenides:An Ultrasonic Study

Abstract Views: 326  |  PDF Views: 8

Authors

Amit Kumar
Amity School of Applied Sciences, Amity University Haryana, Manesar-122413, India
Devraj Singh
Department of Applied Physics, Amity School of Engineering & Technology, Bijwasan, New Delhi-110061, India
Ram Krishna Thakur
Amity School of Applied Sciences, Amity University Haryana, Manesar-122413, India
Raj Kumar
Department of Physics, Gurgaon Institute of Technology & Management, Gurgaon-122413, India

Abstract


The paper presents theoretical temperature dependent mechanical and thermophysical properties of lutetium monochalcogenides using ultrasonic analysis. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential upto second nearest neighbour. The second order elastic constants are used to compute mechanical parameters such as bulk modulus, shear modulus, tetragonal modulus, Poisson's ratio, Zener anisotropy factor and fracture to toughness ratio for finding future performance of the chosen materials at room temperature. The second order elastic constants are further applied to find out the ultrasonic velocities <100>, <110> and <111> crystallographic directions in the temperature range 100-300 K. Finally Debye temperature, ultrasonic Gruneisen parameters and first order pressure derivatives of lutetium monochalcogenides are computed using the second and third order elastic constants. The obtained results are discussed in correlation with available results on these properties for the chosen materials.

Keywords


Lutetium Monochalcogenides, Elastic Properties, Ultrasonic Properties.

References