Open Access Open Access  Restricted Access Subscription Access

Temperature Dependent Ultrasonic Characterization of Wurtzite Boron Nitride


Affiliations
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, India
 

The present study encloses the evaluation of second order elastic constants of wurtzite boron nitride (w-BN) in temperature range 300K-1800K using the many body interaction potential model approach. Orientation and temperature dependent ultrasonic velocity, thermal relaxation time and other related thermo-physical parameters (Debye average velocity, Debye temperature,specific heat, thermal energy density and thermal conductivity) are also calculated using evaluated second order elastic constants and other known parameters of w-BN. It is found that thermal relaxation time is least for the wave propagation along 55° from the unique axis of crystal at each temperature. The orientation dependent thermal relaxation time of w-BN is predominantly affected by the Debye average velocity while the temperature dependent thermal relaxation time is governed by thermal conductivity. The calculated elastic and ultrasonic properties of w-BN are compared with the properties of other wurtzite structured materials for the complete analysis and characterization of material.

Keywords

Elastic Constants, Ultrasonic Velocities, Thermal Conductivity, Thermal Relaxation Time.
User
Notifications
Font Size

  • Levinshtein M. E., Rumyantsev S. L. and Shur M. S., Boron nitride in properties of advanced semiconductor material: GaN, AlN, InN, BN, SiC, SiGe, 10th ed. Wiely Interscience Publication, John Wiely and Sons Inc. New York, (2001) 67-89.
  • Berger L. I., Semiconductor Material,CRC Press Inc. New York, (1997) 112.
  • Meneghetti P., Hans P. J. and Shaffer G. W., Enhanced boron nitride composition and polymer-based compositions made therewith, U.S. Patent (2008) US7445797.
  • Zhou H. Q., Zhu J. X., Liu Z., Yan Z. and Fan X. J. et al., High thermal conductivity of suspended few layer hexagonal boron nitride sheets, Nano Res., 7(8) (2014) 1232-1240.
  • Zhou W., Qi S., An Q., Zhao H. and Liu N., Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bul., 42 (2007) 1863-1873.
  • Sichel E. K., Miller R. E., Abrahams M. S. and Buiocchi C. J., Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride, Phys. Rev. B 13 (1976) 4607
  • Balandin A. A., Ghosh S., Bao W. Z., Calizo I., Teweldebrhan D., Miao F. and Lau C. N., Superiorthermal conductivity of single-layer graphene, Nano Lett, 8 (2008) 902-907.
  • Shahil K.M.F. and Balandin A.A.,Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett, 12 (2012) 861-867.
  • Green J. F., Bolland T. K. and Bolland J. W., Theoretical elastic behavior for hexagonalboron nitride, J. Chem. Phys. 64(2) (1976 ) 656-662.
  • Wentzcovitch R. M., Chang K. J. and Cohen M. L., Electronic and structural properties of BN and BP, Phys. Rev.,B 34 (1986) 1071.
  • Grimsditch M. and Zouboulis E.S., Elastic constants of boron nitride, Journal of Applied Physics, 76 (1994) 832-834.
  • Shimada K. , Sota T. and Suzuku K., First-principles study on electronic and elastic properties of BN, AlN, and GaN, J. Appl. Phys., 84(9) (1998 ) 4951-4958.
  • Solozhenko V. L., Hausermann D., Mezouar M. and Kunz M., Equation of state of wurtzitic boron nitride to 66 GP,. Appl. Phys. Lett., 72(14) (1998 ) 1691-1693.
  • Kanoun M. B., Merad A. E., Merad G., Cibert J. and H Aourag H., Prediction study of elastic properties under pressure effect for zinc blende BN, AlN, GaN and InN, Solid-State Electronics, 48(9) (2004) 1601-1606.
  • Martin R. M., Relation between elastic tensors of wurtzite and zinc-blende structure materials, Phys. Rev. B, 6(12) (1972) 4546.
  • Kittel C., Introduction to Solid State Physics, 7th edition John Wiley & Sons, Inc. Singapore, New York, 17 (2003) 25, 51.
  • Yadav A. K., Yadav R. R., Pandey D. K. and Singh D., Ultrasonic study of fission products precipitated in the nuclear fuel, Mat. Lett., 62 (2008) 3258-3261.
  • Pandey D. K. and Pandey S., Ultrasonic : a technique of material characterization: in Acoustic Waves, edited by: Don W. Dissanayake, Scio Publisher, Sciyo, Croatia, (2010) 397-430.
  • Pillai S.O., Solid State Physics : Crystal Physics , 7th Ed. New Age International Publisher, (2005) Chap. 4 , pp. 100- 111.
  • Kittel C., Introduction to Solid State Physics, 7th edition John Wiley & Sons, Inc. Singapore, New York, (2003) 24.
  • Gray D.E., AIP Handbook IIIrd edition. McGraw Hill Co. Inc. New York, (1956) pp.4-44, 4-57.
  • Morelli D. T. and Slack G. A., High lattice thermal conductivity solids in high thermal conductivity of materials, Ed. Shinde SL, Goela J. XVIII Ed. Springer Publisher, (2006) chap 2, pp 37-68.
  • Shimada K., Sota T. and Suzuku K., First-principles study on electronic and elastic properties of BN, AlN, and GaN, J. Appl. Phy., 84(9) (1998) 4951-4958.
  • Pandey D. K., Singh D. and Yadav R. R., Ultrasonic wave propagation in IIIrd group nitrides, Appl. Acoust., (2007) 766-777.
  • Bai-Ru U., Zhao-Yi Z., Hua-Zhong G. and Xiang-Rong C., Structural and thermodynamic properties of wurtzitic boron nitride from first-principle calculations, Commun. Theor. Phys., 48(2007) 4925-4929.

Abstract Views: 265

PDF Views: 0




  • Temperature Dependent Ultrasonic Characterization of Wurtzite Boron Nitride

Abstract Views: 265  |  PDF Views: 0

Authors

Chandreshvar Prasad Yadav
Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, India
Dharmendra Kumar Pandey
Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, India

Abstract


The present study encloses the evaluation of second order elastic constants of wurtzite boron nitride (w-BN) in temperature range 300K-1800K using the many body interaction potential model approach. Orientation and temperature dependent ultrasonic velocity, thermal relaxation time and other related thermo-physical parameters (Debye average velocity, Debye temperature,specific heat, thermal energy density and thermal conductivity) are also calculated using evaluated second order elastic constants and other known parameters of w-BN. It is found that thermal relaxation time is least for the wave propagation along 55° from the unique axis of crystal at each temperature. The orientation dependent thermal relaxation time of w-BN is predominantly affected by the Debye average velocity while the temperature dependent thermal relaxation time is governed by thermal conductivity. The calculated elastic and ultrasonic properties of w-BN are compared with the properties of other wurtzite structured materials for the complete analysis and characterization of material.

Keywords


Elastic Constants, Ultrasonic Velocities, Thermal Conductivity, Thermal Relaxation Time.

References