Open Access Open Access  Restricted Access Subscription Access

Acoustical and Excess Parameter Studies of Piperine with MgCl2


Affiliations
1 Department of Physics, Shivchhatrapati College, Aurangabad-431005, India
2 Department of Physics, Vivekanand College, Aurangabad-431005, India
3 Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431005, India
 

Ultrasonic velocity, density and viscosity of drug Piperine with MgCl2 have been measured as a function of number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 323.15 K, 328.15 K and 333.15 K. The experimentally collected data have been used to calculate various acoustical, thermodynamic and excess parameters such as excess values of adiabatic compressibility, excess intermolecular free length, excess specific acoustic impedance, excess relaxation amplitude and excess relaxation time have been calculated. Above excess parameters are fitted to the Redlich-Kister equation. The results of acoustical, thermodynamic and excess properties reveal the existence of strong molecular interaction in the mixtures. The drug works as a structure breaker (it breaks the structure of MgCl2) and there is ion formation in the system. Acoustic, thermodynamic and excess parameter of mixture reflects the structural deformation in terms of intermolecular interaction.

Keywords

Excess Adiabatic Compressibility, Molecular Interaction, Redlich-Kister Equation, Ultrasonic Investigation.
User
Notifications
Font Size

  • Iloukhani H., Rezaei-Sameti M., J. Basiri-Parsa and Azizian S., Studies of dynamic viscosity and Gibbs energy of activation of binary mixtures of methylcyclohexane with n-alkanes (C5-C10) at various temperatures, J. Mol. Liq. 126 (2006) 117-123.
  • Giner B., Villares A., Gascón I., Cea P. and Lafuente C., Speeds of sound and isentropic compressibilities of binary mixtures containing cyclic ethers and haloalkanes at 298.15 and 313.15 K. Int. J. Thermophys. 25 (2004) 1735-1746.
  • Prausnitz J.M., Lichtenthaler R.N. and de Azevedo E. G., Molecular Thermodynamics of Fluid-Phase Equilibria. Pearson Education Indore (1998).
  • Sreekanth K., Kumar D.S., Kondaiah M. and Rao D.K., Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N,N-dimethylacetamide at 308.15 K, Physica B: Condens. Matter 406 (2011) 854-858.
  • Kanhekar S., Pawar P. and Bichile G.K., Thermodynamic properties of electrolytes in aqueous solution of glycine at different temperatures, Indian J. Pure Appl. Phys. 48 (2010) 95-99.
  • Douhéret G., Moreau C. and Viallard A., Excess thermodynamic quantities in binary systems of non electrolytes. II. calculation-application to water-acetonitrile mixtures, Fluid Phase Equilib. 22 (1985) 289-319.
  • Reed A.E., Curtiss L.A. and Weinhold F., Intermolecular Interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (1988) 899-926.
  • Reinhart R.A., Magnesium metabolism: a review with special reference to the relationship between intracellular content and serum levels, Arch. Intern. Med. 148 (1988) 2415-2420.
  • Gielen M. and Tiekink E.R., Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine. John Wiley & Sons, London 2005.
  • Kharbanda C., Alam M.S., Hamid H., Javed K., Bano S., Ali Y., Dhulap A., Alam P. and Pasha M., Novel Piperine derivatives with antidiabetic effect as PPAR-γ agonists, Chem. Biol. Drug Des. 88 (2016) 354-362.
  • Lee E.B., Shin K.H. and Woo W.S., Pharmacological Study On Piperine, Arch. Pharma. Res. 7 (1984) 127-132.
  • Sunila E. and Kuttan G., Immunomodulatory and antitumor activity of piper longum Linn. and Piperine, J. Ethnopharmac. 90 (2004) 339-346.
  • Garcia M.A., Koonrugsa N. and Toda T., Immunomodulatory and antitumor activity of piper Longum Linn. and Piperine, EMBO J. 21 (2002) 6015-6024.
  • Nalle P.B., Deshmukh S.S., Dorik R.G. and Jadhav K.M., Effect of drug Piper Nigrum on magnesium chloride at varying concentration and temperature through ultrasonic method: a thermoacoustic study, Cogent Physics 3 (2016) 1262572.
  • DiGuilio R.M., McGregor W.L. and Teja A.S., Thermal conductivities of the ethanolamines, J. Chem. Eng. Data 37 (1992) 242-245.
  • Naidu P.S. and Prasad K.R., Ultrasonic velocity and allied parameters in solutions of cypermethrin with Xylene and ethanol, Indian J. Pure Appl. Phys., 42 (2004) 512-517.
  • Khan I., Effect of KCl and KNO3 on partial molal volumes and partial molal compressibilities of some amino acids at different temperatures, Int. J. Thermophys. 30(2), (2009) 475-489.
  • Rao G.R., Sarma A.V. and Rambabu C., Excess volumes, deviation in viscosities and compressibilities of binary mixtures consisting of morpholine, piperidine with methanol and pyridine at different temperatures, Indian J. Pure Appl. Phys. 42 (2004) 820-826.
  • Panayiotou C. and Sanchez I., Hydrogen bonding in fluids: an equation-of-state approach, J. Phys. Chem. 95 (1991) 10090-10097.
  • Rassing J. and Attwood D., Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer pluronic F127 in aqueous solution, Int. J. Pharmac 13 (1982) 47-55.
  • Wadi R.K. and Ramasami P., Partial molal volumes and adiabatic compressibilities of transfer of glycine and DL-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K, J. Chem. Soc., Faraday Transac. 93 (1997) 243-247.
  • Hammes G.G. and Schimmel P.R., An investigation of water-urea and water-urea-polyethylene glycol interactions. J. Am. Chem. Soc. 89 (1967) 442-446.
  • Rao N. and Verrall R.E., Ultrasonic velocity, excess adiabatic compressibility, apparent molar volume and apparent molar compressibility properties of binary liquid mixtures containing 2-butoxyethanol, Can. J. Chem. 65 (1987) 810-816.
  • Awasthi A. and Shukla J., Ultrasonic and IR study of intermolecular association through hydrogen bonding in ternary liquid mixtures, Ultrasonics 41 (2003) 477-486.
  • Thirumaran S. and George D., Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures, ARPN J. Eng. Appl. Sci. 4 (2009) 1-11.
  • Nithiyanantham S. and Palaniappan L., Thermodynamical and excess thermoacoustical study on some monosaccharide (glucose) with enzyme amylase on aqueous media at 298.15 K, Euro. Phys. J. Appl. Phys. 53 (2011) 31101.
  • Kessler L. and Dunn F., Ultrasonic investigation of the conformal changes of bovine serum albumin in aqueous solution, J. Phys. Chem. 73 (1969) 4256-4263.
  • Rastogi M., Awasthi A., Gupta M. and Shukla J., Ultrasonic investigations of X ... HO bond complexes, Indian J. Pure Appl. Phy. 40 (2002) 256-263.
  • Fort R. and Moore W., Adiabatic compressibilities of binary liquid mixtures, Transac. Faraday Soc. 61 (1965) 2102-2111.
  • Fort R. and Moore W., Viscosities of binary liquid mixtures, Transac. Faraday Soc. 62 (1966) 1112-1119.
  • Tadkalkar A.P., Deshmukh B.D. and Bichile G.K., Study of excess acoustic parameters of citric acid in ionic solutions, Arch. Phys. Res. 3 (2012) 287-291.
  • Fakruddin S., Pushpalatha M., Srinivasu C. and Narendra K., Excess thermo-acoustical parameters in binary liquid mixture containing N-butanol at different temperatures, I. J. Mod. Sci. 1 (2015) 97-100.

Abstract Views: 269

PDF Views: 0




  • Acoustical and Excess Parameter Studies of Piperine with MgCl2

Abstract Views: 269  |  PDF Views: 0

Authors

Pallavi B. Nalle
Department of Physics, Shivchhatrapati College, Aurangabad-431005, India
R. G. Dorik
Department of Physics, Vivekanand College, Aurangabad-431005, India
K. M. Jadhav
Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431005, India

Abstract


Ultrasonic velocity, density and viscosity of drug Piperine with MgCl2 have been measured as a function of number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 323.15 K, 328.15 K and 333.15 K. The experimentally collected data have been used to calculate various acoustical, thermodynamic and excess parameters such as excess values of adiabatic compressibility, excess intermolecular free length, excess specific acoustic impedance, excess relaxation amplitude and excess relaxation time have been calculated. Above excess parameters are fitted to the Redlich-Kister equation. The results of acoustical, thermodynamic and excess properties reveal the existence of strong molecular interaction in the mixtures. The drug works as a structure breaker (it breaks the structure of MgCl2) and there is ion formation in the system. Acoustic, thermodynamic and excess parameter of mixture reflects the structural deformation in terms of intermolecular interaction.

Keywords


Excess Adiabatic Compressibility, Molecular Interaction, Redlich-Kister Equation, Ultrasonic Investigation.

References