Open Access
Subscription Access
Ultrasonic Characterization of Intermetallic Compounds
A simple interaction potential model has been established to calculate the higher order elastic constants of the intermetallic compounds NdS, NdSe, NdTe in the temperature range from 100-500 K. The ultrasonic velocity, Debye average velocity, thermal relaxation time and acoustic coupling constant are calculated using the higher order elastic constants and other related parameters. Ultrasonic attenuation due to phonon-phonon interaction and thermoelastic loss are studied as a function of temperature along <111> direction. Important characteristic features well connected to the acoustical parameters are discussed.
Keywords
Ultrasonic Propagation, Elastic Constants, Intermetallics
User
Font Size
Information
- Mason W. P., Piezoelectric crystals and their application to ultrasonics, D. Van Nortrand, Princeton, (1951).
- Mason W. P., Effect of impurities and phonon processes on the ultrasonic attenuation of germanium crystal quartz and silicon, In: Physical Acoustics, 3 (1965) 235-286.
- Elmore P. A. and Breazeale M. A., Dispersion and frequency dependent nonlinearity parameters in a graphite-epoxy composite, Ultrasonics, 41 (2004) 709718.
- Singh D. and Yadav R. R., The thermal conductivity and ultrasonic absorption in dielectric crystals, J. Pure Appl. Ultrason. 25 (2003) 82-87.
- Singh D., Behaviour of acoustic attenuation in rare-earth chalcogenides, Mater. Chem. Phys. 115 (2009) 65-68.
- Zhuze V. P., Golubkov A. V., Goncharova E. V. and Sergeeva V. M., Electric properties of rare-earth monochalcogonides (cerium subgroup), Sov. Phys. Solid State 6 (1964) 257-267.
- Debyatkova E. D., Zhuze V. P., Golubkov A. V., Sergeeva V. M. and Smirnov I. A., Electrical properties of rare-eartn monochalcogenides (Ce monochalgenides), Sov. Physics-Solid State 6 (1964) 343.
- Iandelli A., Monochalcogenides of lanthanum, cerium, praseo-dymium and neodymium, Gazz. Chim. Ital 85 (1955) 881-887.
- Brugger K., Thermodynamic definition of higher order elastic coefficients, Phys. Rev. 133 (1964) A1611-A1612.
- Born M. and Mayer J. E., Zur Gittertheorie der Ionenkristalle, Zeitschrift Für Phys. 75 (1932) 1-18.
- Leibfried G. and Hahn H., Zur temperaturabhängigkeit der elastischen konstanten von alkalihalogenidkristallen, Z. Phys. 150 (1958) 497-525.
- Leibfried G. and Ludwig W., Theory of anharmonic effects in crystals, In: Solid State Physics, Edited by Seitz F, Turnbull D, Academic Press, New York, 12 (1964).
- Ghate P. B., Third-order elastic constants of alkali halide crystals, Phys. Rev. 139 (1965) A1666-A1674.
- Mori S. and Hiki Y., Calculation of the third- and fourthorder elastic constants of alkali halide crystals, J. Phys. Soc. Japan 45 (1978) 1449-1456.
- Singh D., Mishra G., Kumar R. and Yadav R. R., Temperature dependence of elastic and ultrasonic properties of sodium borohydride, Commun. Phys. 27 (2017) 151.
- Akhiezer A., On the absorption of sound in solids, J.Phys. 1 (1939) 277-287.
- Yadav R. R., Ultrasonic attenuation in CeAl3, J. Phys.Soc. Japan 55 (1986) 544-545.
- Yadav R. R. and Singh D., Ultrasonic attenuation in lanthanum monochalcogenides, J. Phys. Soc. Jpn. 70 (2001) 1825-1832.
- Kumar R., Singh D. and Tripathi S., Crystal anharmonicity in strontium monochalcogenides, In:
- Asian J. Chem., 24 (2012) 5652-5654.
- Singh D., Pandey D. K., Singh D. K. and Yadav R. R., Propagation of ultrasonic waves in neptunium monochalcogenides, Appl. Acoust. 72 (2011) 737-741.
- Singh D., Pandey D. K. and Yadawa P. K., Ultrasonic wave propagation in rare-earth monochalcogenides, Cent. Eur. J. Phys. 7 (2009) 198-205.
- Verma A. K., Kaushik S., Singh D. and Yadav R. R., Elastic and thermal properties of carbides of U, Pu, and Am, J. Phys. Chem. Solids 133 (2019) 21-27.
- Bhalla V., Singh D. and Jain S. K., Mechanical and thermophysical properties of rare-earth monopnictides, Int. J. Comput. Mater. Sci. Eng. 05 (2016) 1650012.
Abstract Views: 261
PDF Views: 1