Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Yadav, Chandreshvar Prasad
- Temperature Dependent Ultrasonic Characterization of Wurtzite Boron Nitride
Abstract Views :206 |
PDF Views:0
Authors
Affiliations
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, IN
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, IN
Source
Journal of Pure and Applied Ultrasonics, Vol 39, No 4 (2017), Pagination: 103-109Abstract
The present study encloses the evaluation of second order elastic constants of wurtzite boron nitride (w-BN) in temperature range 300K-1800K using the many body interaction potential model approach. Orientation and temperature dependent ultrasonic velocity, thermal relaxation time and other related thermo-physical parameters (Debye average velocity, Debye temperature,specific heat, thermal energy density and thermal conductivity) are also calculated using evaluated second order elastic constants and other known parameters of w-BN. It is found that thermal relaxation time is least for the wave propagation along 55° from the unique axis of crystal at each temperature. The orientation dependent thermal relaxation time of w-BN is predominantly affected by the Debye average velocity while the temperature dependent thermal relaxation time is governed by thermal conductivity. The calculated elastic and ultrasonic properties of w-BN are compared with the properties of other wurtzite structured materials for the complete analysis and characterization of material.Keywords
Elastic Constants, Ultrasonic Velocities, Thermal Conductivity, Thermal Relaxation Time.References
- Levinshtein M. E., Rumyantsev S. L. and Shur M. S., Boron nitride in properties of advanced semiconductor material: GaN, AlN, InN, BN, SiC, SiGe, 10th ed. Wiely Interscience Publication, John Wiely and Sons Inc. New York, (2001) 67-89.
- Berger L. I., Semiconductor Material,CRC Press Inc. New York, (1997) 112.
- Meneghetti P., Hans P. J. and Shaffer G. W., Enhanced boron nitride composition and polymer-based compositions made therewith, U.S. Patent (2008) US7445797.
- Zhou H. Q., Zhu J. X., Liu Z., Yan Z. and Fan X. J. et al., High thermal conductivity of suspended few layer hexagonal boron nitride sheets, Nano Res., 7(8) (2014) 1232-1240.
- Zhou W., Qi S., An Q., Zhao H. and Liu N., Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bul., 42 (2007) 1863-1873.
- Sichel E. K., Miller R. E., Abrahams M. S. and Buiocchi C. J., Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride, Phys. Rev. B 13 (1976) 4607
- Balandin A. A., Ghosh S., Bao W. Z., Calizo I., Teweldebrhan D., Miao F. and Lau C. N., Superiorthermal conductivity of single-layer graphene, Nano Lett, 8 (2008) 902-907.
- Shahil K.M.F. and Balandin A.A.,Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett, 12 (2012) 861-867.
- Green J. F., Bolland T. K. and Bolland J. W., Theoretical elastic behavior for hexagonalboron nitride, J. Chem. Phys. 64(2) (1976 ) 656-662.
- Wentzcovitch R. M., Chang K. J. and Cohen M. L., Electronic and structural properties of BN and BP, Phys. Rev.,B 34 (1986) 1071.
- Grimsditch M. and Zouboulis E.S., Elastic constants of boron nitride, Journal of Applied Physics, 76 (1994) 832-834.
- Shimada K. , Sota T. and Suzuku K., First-principles study on electronic and elastic properties of BN, AlN, and GaN, J. Appl. Phys., 84(9) (1998 ) 4951-4958.
- Solozhenko V. L., Hausermann D., Mezouar M. and Kunz M., Equation of state of wurtzitic boron nitride to 66 GP,. Appl. Phys. Lett., 72(14) (1998 ) 1691-1693.
- Kanoun M. B., Merad A. E., Merad G., Cibert J. and H Aourag H., Prediction study of elastic properties under pressure effect for zinc blende BN, AlN, GaN and InN, Solid-State Electronics, 48(9) (2004) 1601-1606.
- Martin R. M., Relation between elastic tensors of wurtzite and zinc-blende structure materials, Phys. Rev. B, 6(12) (1972) 4546.
- Kittel C., Introduction to Solid State Physics, 7th edition John Wiley & Sons, Inc. Singapore, New York, 17 (2003) 25, 51.
- Yadav A. K., Yadav R. R., Pandey D. K. and Singh D., Ultrasonic study of fission products precipitated in the nuclear fuel, Mat. Lett., 62 (2008) 3258-3261.
- Pandey D. K. and Pandey S., Ultrasonic : a technique of material characterization: in Acoustic Waves, edited by: Don W. Dissanayake, Scio Publisher, Sciyo, Croatia, (2010) 397-430.
- Pillai S.O., Solid State Physics : Crystal Physics , 7th Ed. New Age International Publisher, (2005) Chap. 4 , pp. 100- 111.
- Kittel C., Introduction to Solid State Physics, 7th edition John Wiley & Sons, Inc. Singapore, New York, (2003) 24.
- Gray D.E., AIP Handbook IIIrd edition. McGraw Hill Co. Inc. New York, (1956) pp.4-44, 4-57.
- Morelli D. T. and Slack G. A., High lattice thermal conductivity solids in high thermal conductivity of materials, Ed. Shinde SL, Goela J. XVIII Ed. Springer Publisher, (2006) chap 2, pp 37-68.
- Shimada K., Sota T. and Suzuku K., First-principles study on electronic and elastic properties of BN, AlN, and GaN, J. Appl. Phy., 84(9) (1998) 4951-4958.
- Pandey D. K., Singh D. and Yadav R. R., Ultrasonic wave propagation in IIIrd group nitrides, Appl. Acoust., (2007) 766-777.
- Bai-Ru U., Zhao-Yi Z., Hua-Zhong G. and Xiang-Rong C., Structural and thermodynamic properties of wurtzitic boron nitride from first-principle calculations, Commun. Theor. Phys., 48(2007) 4925-4929.
- Elastic and Thermo-Acoustic Study of YM Intermetallics
Abstract Views :170 |
PDF Views:1
Authors
Aftab Khan
1,
Chandreshvar Prasad Yadav
1,
Dharmendra Kumar Pandey
1,
Dhananjay Singh
2,
Devraj Singh
3
Affiliations
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208001, IN
2 Department of Chemistry, P.P.N. (P.G.) College, Kanpur-208001, IN
3 Amity Institute of Applied Sciences, Amity University, Noida-201313, IN
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208001, IN
2 Department of Chemistry, P.P.N. (P.G.) College, Kanpur-208001, IN
3 Amity Institute of Applied Sciences, Amity University, Noida-201313, IN
Source
Journal of Pure and Applied Ultrasonics, Vol 41, No 1 (2019), Pagination: 1-8Abstract
The work involves estimation of elastic, ultrasonic and thermo-physical properties of YM (Y: Yttrium, M=Zn, Cu, Ag) intermetallics at 300 K. Initially, second order elastic constants and elastic modulus of chosen intermetallics are determined in temperature range 300K-1200K under potential model approach. Later, the ultrasonic velocities are calculated using second order elastic constants and densities for wave propagation along <100>, <110> and <111> crystallographic directions. Additionally, Debye temperature, specific heat at constant volume, thermal conductivity and thermal relaxation time are also calculated. The analysis reveals that compound YCu incorporates better mechanical and thermal properties than the other two compounds.Keywords
Intermetallics, Elastic Properties, Ultrasonic Velocity, Thermal Relaxation Time, Thermal Conductivity.References
- Chouhan S. S., Soni P., Pagare G., Sanyal S. P. and Rajagopalan M., Ab-initio study of electronic and elastic properties of B2-type ductile YM (M=Cu, Znand Ag) intermetallics, Physica B 406 (2011) 339-344.
- Wu Y., Hu W. and Han S., First principle calculation of the elastic constants, the electronic density of the states and the ductility mechanism of the intermetallic compounds: YAg, YCu and YRh, Physica B 403 (2008) 3792-3797.
- Wang R., Wang S. and Xiaozhi Wu., On third-order elastic constants for ductile rare-earth intermetallic compounds: A first-principles study, Intermetallics 18 (2010) 1653-1658.
- Tao X., Chen H., Li X., Ouyang Y. and Liao S., The Mechanical, electronic structure and thermodynamic properties of B2 based AgRE studied from first principles, Phys. Scr. 83 (2011) 045301.
- Soyalp F., Yavuz M. and YalçIn Z., Ab initio investigations of phonons and thermodynamic properties of ScZn and YZn in the B2 structure, Comput. Mater. Sci. 77 (2013) 72-80.
- Pu C., Zhou D., Song Y., ,Wang, Z., Zhang F. and Lu Z., Phase transition and thermodynamic properties of YAg alloy from first-principles calculations, Comput. Mater. Sci. 102 (2015) 21-26.
- Chen Q., Ji M., Wang C.Z., Ho K.M. and Biner S.B., Core properties of dislocations in YCu and YAg B2 intermetallic compounds, Intermetallics 18 (2010) 312-318.
- Brugger K., Thermodynamics definition of Higher Order Elastic coefficients, Phys. Rev. 133(6A) (1964) A1611.
- Yadav R.R. and Singh D., Ultrasonic attenuation in lanthanum monochalcogenides, J. Phys. Soc. Jpn. 70 (2001) 1825-1832.
- Yadav R.R. and Pandey D.K., Size dependent acoustical properties of bcc metal, Acta Phys. Pol. A 107 (2005) 933-946.
- Moakafi M., Khenata R., Bouhemadou A., Semari F., Reshak A.H. and Rabah M., Elastic, electronic and optical properties of cubic antiperovskites SbNCa3 and BiNCa3, Comput. Mat. Sci. 46 (2009) 1051-1057.
- Kalarasse F., Kalarasse L., Bennecer B. and Mellouki A., Elastic and Electronic properties of Li2ZnFe, Comput. Mat. Sci. 47 (2010) 869-874.
- Kakani S.L. and Hemrajani C., Solid State Physics, Sultan Chand & Sons, New DelhiIndia, (2005).
- Truell R., Elbaum C. and Chick B. B., Ultrasonic Methods in Solid State Physics, Academic Press, New York, (1969).
- Pillai S. O., Solid State physics: Crystal Physics, 7th Ed., New Age International Publisher, (2005) 100-111.
- Pandey D. K. and Pandey S., in Acoustic Waves: Ultrasonic: a technique of material characterization, Eds: Don W. Dissanayake, Scio Publisher, Sciyo Croatia, (2010) 397-430.
- Kittel C., Introduction to Solid State Physics,7th edition John Wiley & Sons, Inc. Singapore New York, (2003) 24.
- Gray D. E., AIP Handbook, IIIrd edition. McGraw Hill Co. Inc., New York, (1956) 4-44, 4-57.
- Morelli D. T. and Slack G. A., High Lattice Thermal Conductivity Solids in: High Thermal Conductivity of Materials, Eds: by Shinde SL, Goela J. XVIII Ed. Springer, (2006) 37-68.
- Pandey D. K., Singh D., Bhalla V., Tripathi S. and Yadav R. R., Temperature dependent elastic and ultrasonic properties of Yt terbium monopnictides, Indian J. Pure Appl. Phys. 52 (2014) 330-336.
- Gaith M. and Alhayek I., Correlations between overall elastic stiffness, bulk modulus and interatomic distance in anisotropic materials: semiconductors, Rev. Adv. Mater. Sci. 21 (2009) 183-191.
- Pugh S. F., Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823- 843.
- Bhalla V., Singh D., Jain S. K. and Kumar R., Ultrasonic attenuation in rare-earth monoarsenides, Pramana 86 (2016) 1355-1367.
- Yadawa P. K., Singh D., Pandey D. K. and Yadav R. R., Elastic and acoustic properties of heavy rare-earth metals, The Open Acoustic Journal 2 (2009) 61-67.
- Yadav A. K., Yadav R. R., Pandey D. K. and Singh D., Ultrasonic study of fission products precipitated in the nuclear field, Mat. Lett., 62 (2008) 3258-3261.
- Pandey D. K., Singh D. and Yadav R. R., Ultrasonic wave propagation in IIIrd group nitrides, Appl. Acoust. (2007) 766-777.
- Singh D., Bhalla V., Bala J. and Wadhwa S., Ultrasonic investigations on polonides of Ba, Ca, and Pb, Z. Naturforsch. A 72 (2017) 977-983.
- Yadav C.P., Pandey D.K. and Singh D., Ultrasonic study of Laves compounds ScOs2 and YOs2, Indian J. Phys. (2019). http://doi.org/10.1007/s12648-019-01389-8.
- Jyoti B., Singh D., Kanshik S., Bhalla V., Wadhwa S. and Pandey D.K., Ultrasonic attenuation in yttrium monochalcogenides, J. Pure Appl. Ultrason. 40 (2018) 93-99.
- Ultrasonic Characterization of Structured Materials and Smart Fluids
Abstract Views :87 |
PDF Views:1
Authors
Affiliations
1 C.S.J.M. University, Kanpur,, IN
1 C.S.J.M. University, Kanpur,, IN
Source
Journal of Pure and Applied Ultrasonics, Vol 43, No 3-4 (2021), Pagination: 76-76Abstract
No abstract.Keywords
No keywords.References
- No references.
- An ultrasonic exploration of physico-chemical properties for mixtures of dichloroacetyl chloride with polar, non-polar and polymers at 300 K
Abstract Views :24 |
PDF Views:0
Authors
Mahendra Kumar
1,
Chandreshvar Prasad Yadav
1,
Dharmendra Kumar Pandey
1,
Dhananjay Singh
2,
Renuka Arora
1
Affiliations
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, Uttar Pradesh, India., IN
2 Department of Chemistry, P.P.N. (P.G.) College, Kanpur-208 001, Uttar Pradesh, India., IN
1 Department of Physics, P.P.N. (P.G.) College, Kanpur-208 001, Uttar Pradesh, India., IN
2 Department of Chemistry, P.P.N. (P.G.) College, Kanpur-208 001, Uttar Pradesh, India., IN
Source
Journal of Pure and Applied Ultrasonics, Vol 44, No 1-2 (2022), Pagination: 17-27Abstract
The present study is oriented towards the demonstration of physico-chemical properties and molecular interactions of the prepared binary mixture of Dichloroacetyl chloride (DCAC) with methanol/ethanol/CCl 4 / PEGs through ultrasonic non-destructive characterization. The intermolecular interaction, structural ordering, and corrosiveness aspects of prepared binary mixtures have been interpreted on the basis of measured (density, viscosity, ultrasonic velocity) and estimated thermo-physical quantities (compressibility, free length, free volume, Gibb's free energy, thermal relaxation time, and ultrasonic absorption) at 300K. All binary mixtures have been received to undergo exothermic reaction during preparation while mixture DCAC + methanol has been found to produce excessive heat and harmful odour vapour. The study confirms that DCAC+CCl 4 consist of least intermolecular interaction while mixture DCAC with PEG600 possesses strong molecular interaction among constituents accomplished by intense hydrogen bonding and physical forces. It also concludes that DCAC + PEG600 shall be highly viscous and least corrosive in comparison to other prepared mixtures. The present study provides new dimension for applicability of hazardous chemical DCAC in mixture form toward herbicides, pesticides, and fertilizers industries.Keywords
Binary Liquid Mixture, Intermolecular Interaction, Physico-Chemical Properties, Ultrasonic Parameters.References
- Raj B., Rajendran V. and Palanichamy P., Science and Technology of Ultrasonics. Narosa Publishing House, New Delhi, India,(2004). http://www.worldcat.org/oclc/ 47356128
- Kumar M., Khan M. A., Yadav C. P., Pandey D. K. and Singh D., Ultrasonic characterization of binary mixture of 2,3-dichloroaniline and polyethylene glycols, J. Chem. Thermodyn., 161,(2021) 106557. https://doi.org/ 10.1016/j.jct.2021.106557
- Krishna P. M., Kumar B.R., Sathyanarayana B. K., Jyothi A. and Satyanarayana N., Density, viscosity and speed of sound of binary mixtures of sulpholane with aliphatic amines at T=308.15 K, Ind. J. Pure Appl. Phys., 47, (2009) 576-581. http://hdl.handle.net/123456789/5462
- Kumar M., Yadav C. P., Pandey D. K. and Singh D., Physico-Chemical Properties of Binary Mixture of 2, 3-Dichloroaniline and Carbon Tetrachloride at 300 K, Asian J. Chem., 33(10), (2021) 2386-2392. https://doi.org/ 10.14233/ajchem.2021.23341
- Kumar M., Khan M. A., Yadav C. P., Pandey D. K. and Singh D., Ultrasonic characterisation of the binary mixture of 2, 3-dichloroaniline with methanol and ethanol, Indian Chemical Engineer,(2021) pp. 1-11. https://doi.org/ 10.1080/00194506.2021.1988872
- Thiyagarajan R. and Palaniappan L., Molecular interaction study of two aliphatic alcohols with cyclohexane, Ind. J. Pure Appl. Phys., 46,(2008) 852-856. http://hdl.handle.net/123456789/3037
- Thirumaran S. and Sabu K. J., Ultrasonic investigation of amino acids in aqueous sodium acetate medium, Ind. J. Pure Appl. Phys., 47(2), (2009) 87-96. http:// hdl.handle.net/123456789/3181
- Fort R. J. and Moore W. R., Adiabatic compressiblities of binary liquid mixtures, Trans. Faraday Soc., 61,(1965) 2102-2111.
- Spencer J. N., Jeffrey J.E.G., Blevins C. H., Robert C. G. and Mayer F.J., Enthalpies of solution and transfer enthalpies an analysis of the pure base colorimetric method for the determination of hydrogen bond enthalpies, J. Phys. Chem., 83,(1979) 1249-1255. https:/ /doi.org/10.1021/j100473a004
- Fort R. J. and Moore W. R., Viscosities of binary liquid mixtures, Trans. Faraday Soc., 62,(1966) 1112-1119.
- Murugkar A. and Maharolkar A. P., Ultrasonic study of n-butanol and N-N-dimethyl acetamide binary mixtures, Ind. J. Adv. Chem. Sci., 2,(2014) 249-252.
- Lagemann R. T. and Dunbar W. S., Relationships between the velocity of sound and other physical properties of liquids, J. Phys. Chem., 49(5), (1945) 428-436. https:// doi.org/10.1021/j150443a003
- Organic Synthesis (Collective Volume),(1948), 181.
- BOESXEN M. J., Rec. Trar. Ckim., 29,(1910) 85.
- Abraham R. and Abdulkhadar M., Ultrasonic investigation of molecular interaction in binary mixtures of nitriles with methanol/toluene, J. Chem. Thermodyn., 32,(2000) 1-16.
- Dikio E. D., Nelana S. M., Isabirye D. A. and Ebenso E. E., Density, dynamic viscosity and derived properties of binary mixtures of Methanol, Ethanol, n-Propanol and n-Butanol with Pyridine at T= (293.15, 303.15, 313.15 and 323.15) K, Int. J. Electrochem. Sci., 7,(2012) 11101-11122.
- Durr U., Mirzaev S. Z. and Kaatze U., Concentration Fluctuations in Ethanol/Dodecane Mixtures A Light-Scattering and Ultrasonic Spectroscopy Study, J. Phys. Chem. A., 104,(2000) 8855-8862. https://doi.org/ 10.1021/jp000263f
- Ezhil A. M., Resmi L. B., Jothy V. B., Jayachandran M. and Sanjeeviraja C., Ultrasonic study on binary mixture containing dimethylformamide and methanol over the entire miscibility range (0
- Parveen S., Shukla D., Singh S., Singh K.P., Gupta M. and Shukla J.P., Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures, Appl. Acoustics., 70,(2009) 507-513. DOI: 10.1016/j.apacoust.2008.05.008.
- Kadam U. B., Hiray A. P., Sawant A. B. and Hasan M., Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T = (298.15 and 308.15) K, J. Chem. Thermodyn., 38,(2006) 1675-1683. https://doi.org/10.1016/j.jct.2006.03.010
- Gonzalez B., Calvar N., Gomez E. and Dommnguez A., Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 39,(2007) 1578-1588. http://dx.doi.org/10.1016/j.jct.2007.05.004
- Bhiuyan M.M.H. and Uddin M.H., Excess molar volumes and excess viscosities for mixtures of N, N-dimethylformamide with methanol, ethanol and 2-propanol at different temperatures, J. Mol. Liq., 138, (2008) 139-146. https://doi.org/10.1016/j.molliq.2007. 07.006
- Murugkar A. G. and Maharolkar A.P., Investigation on some thermo physical properties of methanol and nitrobenzene binary mixtures, Rasayan J. Chem., 7(1), (2014) 39-43.
- Kumar A., Prakash O. and Prakash S., Ultrasonic Velocities, Densities, and Viscosities of Triethylamine in Methanol, Ethanol, and l-Propanol, J. Chem. Eng. Data, 26,(1981) 64-67. https://doi.org/10.1021/je00023a021
- Rendell G. R., Dispersion of sound velocity in some alcohols, Proc. Ind. Acad. Sci. Sec. A, 16(6), (1942) 369-377. https://doi.org/10.1007/BF03170551
- Gupta R., Yadav S. S. and Khan D. S., The study of molecular interaction of benzaldehyde in non-polar and polar solvents at 303K, RASAYAN J. Chem., 10(1), (2017) 77-81. http://dx.doi.org/10.7324/RJC.2017.1011505
- Gupta A.K., Karn B. K. and Kumar K., Acoustic properties of binary liquid mixtures of carbon tetrachloride with benzene and substituted benzenes, Ori. J. Chem., 26(3), (2010) 931-939. http://www.orientjchem. org/?p=24294.
- Parthasarathy S., Determination of ultrasonic velocity in 52 organic liquids, Proc. Ind. Acad. Sci. A2,(1935) 21. https://www.ias.ac.in/article/fulltext/seca/002/05/0497-0511
- Aminabhavi T. M. and Banerjee K., Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Dimethyl Carbonate with Methanol, Chloroform, Carbon Tetrachloride, Cyclohexane, and Dichloromethane in the Temperature Interval (298.15-308.15) K., J. Chem. Eng. Data, 43,( 1998) 1096-1101. http://doi.org/10.1021/je980145+.
- Siddharthan N. and Jayakumar S., Experimental and theoretical studies of ultrasonic velocity in binary liquid mixtures of toluene with benzene and carbon tetra chloride, Ind. J. Sci., 13(39), (2015) 53-59. http:// www.discovery.org.in/ijs.htm
- Rout B. K. and Chakrovortty V., Molecular interaction study on binary mixture of acetylacetone from the excess properties of ultrasonic velocity, viscosity and density at various temperatures, Ind. J. Chem., 33A,(1994) 303-30. http://nopr.niscair.res.in/handle/123456789/40658.
- Kumar R., Jayakumar S. and Kannappan V., Study of molecular interaction in binary liquid mixtures, Ind. J. Pure Appl. Phys., 46,(2008) 169-175. http:// hdl.handle.net/123456789/542
- Zhang K., Yang J., Yu X., Zhang J. and Wei X., Densities and viscosities for binary mixtures of poly (ethylene glycol) 400+dimethyl sulfoxide and poly (ethylene glycol) 600+ water at different temperatures, J. Chem. Eng. Data, 56,(2011) 3083-3088. https://doi.org/10.1021/je200148u
- Ijardar S. P., Deep eutectic solvents composed of tetrabutylammonium bromide and PEG: density, speed of sound and viscosity as a function of temperature, J. Chem. Thermodyn., 140,(2020) 105897. DOI:10.1016/ j.jct.2019.105897
- Adam O. E. A. and Hassan A. A., Viscosity, Gibbs Free Energy, and Refractive Indices for Binary Mixtures of o?Cresol + Poly (ethylene glycols) at T = 288.15?308.15 K and 96.5 kPa, J. Chem. Eng. Data, 63(9), (2018) a-k. DOI: 10.1021/acs.jced.8b00135.
- Begum S. K., Ratna S. A., Clarke R. J. and Ahmed M. S., Excess molar volumes, refractive indices and transport properties of aqueous solutions of poly (ethylene glycol)s at (303.15?323.15) K, J. Mol. Liq., 202,(2015) 176-188. DOI 10.1016/j.molliq.2014.12.025.
- Vuksanovic J. M., Zivkovic E. M., Radovi I. R., Djordjevi B. D., Serbanovi S. P. and Kijevcanin M. L., Experimental study and modelling of volumetric properties, viscosities and refractive indices of binary liquid mixtures benzene + PEG 200/PEG 400 and toluene + PEG 200/PEG 400, Fluid Phase Equili., 345,(2013) 28-44. https://doi.org/ 10.1016/j.fluid.2013.02.010
- Zivkovic N. V., Serbanovic S. S., Kijevcanin M. L.and Zivkovic E. M., Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone, J. Chem. Eng. Data, 58,(2013) 3332-3341. https://doi.org/10.1021/je400486p
- Ottani S., Vitalini D., Comelli F. and Castellari C., Densities, Viscosities, and Refractive Indices of Poly (ethylene glycol)200 and 400 + Cyclic Ethers at 303.15 K, J. Chem. Eng. Data, 47,(2002) 1197-1204. https:// doi.org/10.1021/je020030c
- Sisakht M. R., Taghizadeh M. and Eliassi A., Densities and Viscosities of Binary Mixtures of Poly(ethylene glycol) and Poly(propylene glycol) in Water and Ethanol in the 293.15-338.15 K Temperature Range, J. Chem. Eng. Data, 48,(2003) 1221-1224. https://doi.org/ 10.1021/je0301388
- Trivedi S. and Pandey S., Interactions within a [Ionic Liquid + Poly (ethylene glycol)] Mixture Revealed by Temperature-Dependent Synergistic Dynamic Viscosity and Probe-Reported Microviscosity, J. Phys. Chem. B., 115,(2011) 7405-7416. https://doi.org/10.1021/ jp203079p
- Wu T. Y., Wang H. C., Su S. G., Gung S. T., Lin M. W. and Lin C., Characterization of ionic conductivity, viscosity, density, and self-diffusion coefficient for binary mixtures of polyethyleneglycol (or polyethyleneimine) organic solvent with room temperature ionic liquid BMIBF4 (or BMIPF6), J. Taiwan Inst. Chem. Eng., 41, (2010) 315-325. DOI:10.1016/J.JTICE.2009.10.003
- Ayranci E. and Sahin M., Interactions of polyethylene glycols with water studied by measurements of density and sound velocity, J. Chem. Thermodyn., 40,(2008) 1200-1207. DOI:10.1016/j.jct.2008.04.007
- Padmanaban R., Venkatramanan K., Kumar B. S. and Rashmi M., A Study on Molecular Interaction and Excess Parameter Analysis of Polyethylene Glycol, Int. J. Mat. Sci., 12(2), (2017) 137-145.
- Yasmin M. and Gupta M., Density, Viscosity, Velocity and Refractive Index of Binary Mixtures of Poly (Ethylene Glycol)200 with Ethanolamine, m-Cresol and Aniline at 298.15 K, J. Sol. Chem., 40,(2011) 1458-1472. DOI:10.1007/s10953-011-9731-1
- Cruz M. S., Chumpitaz L. D. A., Guilherme J., Alves L. F. and Meirelles J. A. A., Kinematic Viscosities of Poly (ethylene glycols), J. Chem. Eng. Data, 45,(2000) 61-63. DOI: 10.1021/je990157a.
- Singh H., Gill H.S. and Sehgal S. S., Synthesis and sedimentation analysis of magneto rheological fluids, Int. J. Sci. Tech., 9,(2016) 1-5. http://doi.org/10.1515/zna-2020-0065
- Bigg P. H., Density of pure water in SI units over the range 0-400C, Brit. J. Appl. Phys., 18,(1967) 521-525. DOI:10.1088/0508-3443/18/4/315.
- Yadav C. P., Pandey D. K. and Singh D., Ultrasonic study of Si-oil based Magnetorheological fluid, Z. Naturforsch., 75(7)a, (2020) 657-663. http://doi.org/10.1515/zna-2020-0065.
- Kestin J., Khalifa H. E., Ro S.T. and Wakeham W. A., Preliminary data on the pressure effect on the viscosity of sodium chloride-water solutions in the range 10-40.degree C, J. Chem. Eng. Data, 22(2), (1977) 207-214. https://doi.org/10.1021/je60073a008.
- Mcskimin H. J., Velocity of Sound in Distilled Water for the Temperature Range 200-750 C, J. Acous. Soci. of Amer., 37(2), (1965) 325-328. https://doi.org/10.1121/ 1.1909330.
- Kinsler L. E. and Aray A. R., Fundamentals of acoustics, Wiley Eastern, New Delhi, (1989).
- Ali A., Hyder S. and Nain A. K., Intermolecular interactions in ternary liquid mixtures by ultrasonic velocity measurements, Int. J. Phys., 74(B), (2000) 63-67.
- Temperature dependent ultrasonic characterization of AuRE intermetallics
Abstract Views :52 |
PDF Views:0
Authors
Mohd Aftab Khan
1,
Chandreshvar Prasad Yadav
1,
Mahendra Kumar
1,
Dharmendra Kumar Pandey
1,
Devendra Nath Mishra
2,
Renuka Arora
1
Affiliations
1 Department of Physics, P.P.N. (P.G.) College, Kanpur, Uttar Pradesh-208 001, India., IN
2 Department of Physics, United College of Engineering & Research, Naini, Prayagraj, Uttar Pradesh-211 010, India., IN
1 Department of Physics, P.P.N. (P.G.) College, Kanpur, Uttar Pradesh-208 001, India., IN
2 Department of Physics, United College of Engineering & Research, Naini, Prayagraj, Uttar Pradesh-211 010, India., IN
Source
Journal of Pure and Applied Ultrasonics, Vol 44, No 3-4 (2022), Pagination: 45-51Abstract
The present work incorporates computation of elastic, ultrasonic and thermal properties of B2 structured AuRE (RE= Sm, Tb, Ho, Tm) intermetallics in temperature range 300K-900K. Initially, elastic constants are determined under potential model approach. Later on, ultrasonic velocities are obtained in the same temperature range for wave propagation along and crystallographic directions. Besides it, Debye temperatures, thermal energy density, thermal expansion coefficient and melting temperature are also determined for chosen intermetallics. The obtained results are compared and analyzed to explore the inherent properties the chosen material.Keywords
Rare-Earth Intermetallics, Elastic Properties, Ultrasonic Velocity, Thermo-Physical Properties.References
- Ahmad S., Shafiq M., Ahmad R., Jalali-Asadabadi S. and Ahmad I., Strongly correlated intermetallic rare-earth monoaurides (Ln-Au): Ab-initio study. J. Rare Earths. 36,(2018) 1106.
- Liu L., Xiaozhi W., Weiguo L., Wang R. and Liu Q., High temperature and pressure effects on the elastic properties of B2 intermetallics AgRE. Open Phys. 13,(2015) 142-150.
- Singh R.P., Singh V.K., Singh R.K. and Rajagopalan M., Elastic, Acoustical and Electronic Behaviour of the RM (R = Dy, Ho, Er; M=Cu, Zn) Compounds. American J. of Cond. Matt. Phys. 3(5), (2013) 123-132.
- Russell A.M., Ductility in Intermetallic Compounds. Adv. Engg. Mat., 5,(2003) 629-639.
- Russell A.M., Zhang Z., Lograsso T.A., Lo C. H. C., Pecharsky A. O., Morris J.R., Ye Y.Y., Gschneidner Jr K.A. and Slager A. J., Mechanical properties of single crystal YAg. Acta Mater. 52,(2004) 4033-4040.
- Buschow K. H. J. and Vucht van J. H. N., Systemetic Arrangement of the Binary Rare-Earth-Aluminium SYSTEMS. Philips Res. Repts. 22,(1967) 233-245.
- Dong H.Q., Tao X.M., Laurila T. and Paulasto-Kröcke M., Thermodynamic assessment of Au-Ho and Au-Tm binary systems. Calphad. 37,(2012) 87-93.
- Ahmad S., Ahmad R., Jalali-Asadabadi S. and Ahmad I., First principle studies of electronic and magnetic properties of Lanthanide-Gold (RAu) binary intermetallics. J. Magn. Magn. Mater. 422,(2017) 458-463.
- Brugger K., Thermodynamics definition of Higher Order Elastic coefficients, Phys. Rev. 133(6A), (1964) A1611.
- Singhal R. L., "Solid state physics", Kedar Nath Ram Nath & Co. Publishers, Meerut, India, 73,(2003).
- Yadav R. R. and Pandey D. K., Size dependent acoustical properties of bcc metal, Acta Phy. Pol. A 107,(2005) 933-946.
- Yadav C .P., Pandey D .K. and Singh D., Elastic and Ultrasonic Studies on RM (R=Tb, Dy, Ho, Tm; M=Zn, Cu) Compounds. Z. Naturforsch. A 74, (2019) 1123-1130.
- Khan A., Yadav C .P., Pandey D .K., Singh D. and Singh D., Elastic and thermo-acoustic study of YM intermetallics. J. Pure Appl. Ultrasonic. 41,(2019) 1-8.
- Pandey D. K. and Yadav C. P., Thermophysical and ultrasonic properties of GdCu under the effect of temperature and pressure. Phase transitions. 93(3), (2020) 338-349.
- Bala J., Singh D., Pandey D. K. and Yadav C. P., Mechanical and thermophysical properties of ScM (M: Ru, Rh, Pd, Ag) intermetallics. Int. J. Thermophysics. 41,(2020) 46.
- Khan M. A., Kumar M., Yadav C. P. and Pandey D. K., Mechanical, thermal and ultrasonic properties of AgRE intermetallics at different temperatures. Phase Transitions. 95(2), (2022) 131-142.
- Moakafi M., Khenata R., Bouhemadou A., Semari F., Reshak A. H. and Rabah M., Elastic, electronic and optical properties of cubic antiperovskites SbNCa 3 and BiNCa 3 , Comput. Mat. Sci. 46,(2009) 1051-1057.
- Pandey D.K. and Pandey S., in Acoustic Waves: Ultrasonic: a technique of material characterization, Eds: Don W. Dissanayake, Scio Publisher, Sciyo Croatia, (2010) 397-430.
- Pillai S.O., in Solid State physics: Crystal physics, 7 th Ed. New Age International Publisher,(2005) 100- 111.