Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Dhawan, P. K.
- Effect of Electrical Resistivity on Ultrasonic Attenuation in FeSe Single Crystal at Low Temperature
Abstract Views :211 |
PDF Views:0
Authors
Affiliations
1 Department of Physics, University of Allahabad, Allahabad-211002, IN
2 Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University, Jaunpur- 222003, IN
1 Department of Physics, University of Allahabad, Allahabad-211002, IN
2 Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University, Jaunpur- 222003, IN
Source
Journal of Pure and Applied Ultrasonics, Vol 41, No 3 (2019), Pagination: 69-73Abstract
The ultrasonic attenuation and velocities following electron viscosity mechanism has been computed in semi-metallic, superconducting single crystal Iron Selenide(FeSe) in low temperatures 10-70K. We have also calculated the electron-viscosity at different low temperature needed for the calculation of ultrasonic attenuation. The behaviour of ultrasonic attenuation is quite similar to its inverse electrical resistivity. The ultrasonic attenuation due to electron viscosity mechanism is most significant at 15 K. Computed results of ultrasonic parameters have been discussed.Keywords
Elastic Constant, Electrical Resistivity, Superconductor, Ultrasonic Attenuation.References
- Singh D., Pandey D.K., Yadawa P.K. and Yadav A.K., Attenuation of ultrasonic waves in V, Nb and Ta at low temperatures, Cryogenics 49 (2009) 12-16.
- Singh D., Yadawa P.K. and Sahu S.K., Effect of electrical resistivity on ultrasonic attenuation in NpTe, Cryogenics 50 (2010) 476-479.
- Zvyagina G.A., Gaydamak T.N., Zhekov K.R., Bilich I.V., Fil V.D., Chareev D.A. and Vasiliev A.N., Acoustic characteristics of FeSe single crystals, Alett. J. Explor. Front. Phys. 101 (2013) 56005-56009.
- Bourgeois-Hope P., Chi S., Bonn D.A., Liang R., Hardy W.N., Wolf T., Meingast C., Doiron-Leyraud N. and Taillefer L., Thermal conductivity of the iron-based superconductor FeSe: nodelessgap with a strong two-band character. Phys. Rev. Lett. 117 (2016) 097003-097007.
- Liu X., Zhao L., He S., He J., Liu D., Mou D., Shen B., Hu Y., Huang J. and Zhou X., Electronic structure and superconductivity of FeSe-related superconductors, J. Phys.: Condens. Matter 27 (2015) 183201-183222.
- Subedi A., Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B78 (2008) 134514-134520.
- Yadav R.R. and Singh D., Behaviour of ultrasonic attenuation in intermetallics. Intermetallics. 9 (2001) 189-194.
- Kor S.K., Kailash , Shanker K. and Mehrotra P., Behaviour of acoustical phonons in metals in low temperature region. J. Phys. Soc. Jpn. 56 (1987) 2428-2432.
- Kor S.K., Pandey G. and Singh D., Ultrasonic attenuation in semi-metallic GdX single crystals (X = P, As, S bans Bi) in the temperature range 10 to 300 K. Indian J. Pure Appl. Phys. 39 (2001) 510-513.
- Yadawa P.K. and Yadav R.R., Ultrasonic study of intermediate-valent intermetallic YbAl2 at different physical conditions. Multidiscip. Model. Mat. Str. 5 (2009) 59-76.
- Pandey D.K. and Pandey S. Ultrasonics: A technique of material characterization.Acoustic Waves, Ed. Dissanayake D., Intech Open Ltd., London (2010) 397-430.
- Bömmel H.E., Ultrasonic attenuation due to latticeelectron interaction in normal conducting metals, Phys. Rev. 100 (1955) 557-558.
- Mason W.P., Ultrasonic attenuation due to lattice-electron interaction in normal conducting metals, Phys. Rev. 97 (1955) 557-558.
- Poker D.B. and Klabunde C.E., Temperature dependence of electrical resistivity of vanadium, platinum, and copper, Phys. Rev. B. 26 (1982) 7012-7014.
- Routa G.C., Ojhab M.S. and Beherac S.N., Electron-phonon coupling and longitudinal sound velocity in heavy fermion systems, Physica B367 (2005) 101-113.
- Yadav R.R., Tiwari A.K. and Singh D., Effect of pressure on ultrasonic attenuation in Ce monopnictides at low temperatures, J. Mater. Sci. 40 (2005) 5319-5321.
- Singh D., Bhalla V., Kumar R. and Tripathi S., Behaviour of acoustical phonons in CeAs in low temperature region, Indian J. Pure Appl. Phys. 53 (2015) 169-174.
- Ultrasonic Characterization of Intermetallic Compounds
Abstract Views :141 |
PDF Views:1
Authors
Affiliations
1 Department of Physics B.S.N.V.P.G. College, Charbagh, Lucknow-226 001,, IN
2 Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur-222 003,, IN
1 Department of Physics B.S.N.V.P.G. College, Charbagh, Lucknow-226 001,, IN
2 Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur-222 003,, IN
Source
Journal of Pure and Applied Ultrasonics, Vol 43, No 3-4 (2021), Pagination: 56-60Abstract
A simple interaction potential model has been established to calculate the higher order elastic constants of the intermetallic compounds NdS, NdSe, NdTe in the temperature range from 100-500 K. The ultrasonic velocity, Debye average velocity, thermal relaxation time and acoustic coupling constant are calculated using the higher order elastic constants and other related parameters. Ultrasonic attenuation due to phonon-phonon interaction and thermoelastic loss are studied as a function of temperature along <111> direction. Important characteristic features well connected to the acoustical parameters are discussed.Keywords
Ultrasonic Propagation, Elastic Constants, IntermetallicsReferences
- Mason W. P., Piezoelectric crystals and their application to ultrasonics, D. Van Nortrand, Princeton, (1951).
- Mason W. P., Effect of impurities and phonon processes on the ultrasonic attenuation of germanium crystal quartz and silicon, In: Physical Acoustics, 3 (1965) 235-286.
- Elmore P. A. and Breazeale M. A., Dispersion and frequency dependent nonlinearity parameters in a graphite-epoxy composite, Ultrasonics, 41 (2004) 709718.
- Singh D. and Yadav R. R., The thermal conductivity and ultrasonic absorption in dielectric crystals, J. Pure Appl. Ultrason. 25 (2003) 82-87.
- Singh D., Behaviour of acoustic attenuation in rare-earth chalcogenides, Mater. Chem. Phys. 115 (2009) 65-68.
- Zhuze V. P., Golubkov A. V., Goncharova E. V. and Sergeeva V. M., Electric properties of rare-earth monochalcogonides (cerium subgroup), Sov. Phys. Solid State 6 (1964) 257-267.
- Debyatkova E. D., Zhuze V. P., Golubkov A. V., Sergeeva V. M. and Smirnov I. A., Electrical properties of rare-eartn monochalcogenides (Ce monochalgenides), Sov. Physics-Solid State 6 (1964) 343.
- Iandelli A., Monochalcogenides of lanthanum, cerium, praseo-dymium and neodymium, Gazz. Chim. Ital 85 (1955) 881-887.
- Brugger K., Thermodynamic definition of higher order elastic coefficients, Phys. Rev. 133 (1964) A1611-A1612.
- Born M. and Mayer J. E., Zur Gittertheorie der Ionenkristalle, Zeitschrift Für Phys. 75 (1932) 1-18.
- Leibfried G. and Hahn H., Zur temperaturabhängigkeit der elastischen konstanten von alkalihalogenidkristallen, Z. Phys. 150 (1958) 497-525.
- Leibfried G. and Ludwig W., Theory of anharmonic effects in crystals, In: Solid State Physics, Edited by Seitz F, Turnbull D, Academic Press, New York, 12 (1964).
- Ghate P. B., Third-order elastic constants of alkali halide crystals, Phys. Rev. 139 (1965) A1666-A1674.
- Mori S. and Hiki Y., Calculation of the third- and fourthorder elastic constants of alkali halide crystals, J. Phys. Soc. Japan 45 (1978) 1449-1456.
- Singh D., Mishra G., Kumar R. and Yadav R. R., Temperature dependence of elastic and ultrasonic properties of sodium borohydride, Commun. Phys. 27 (2017) 151.
- Akhiezer A., On the absorption of sound in solids, J.Phys. 1 (1939) 277-287.
- Yadav R. R., Ultrasonic attenuation in CeAl3, J. Phys.Soc. Japan 55 (1986) 544-545.
- Yadav R. R. and Singh D., Ultrasonic attenuation in lanthanum monochalcogenides, J. Phys. Soc. Jpn. 70 (2001) 1825-1832.
- Kumar R., Singh D. and Tripathi S., Crystal anharmonicity in strontium monochalcogenides, In:
- Asian J. Chem., 24 (2012) 5652-5654.
- Singh D., Pandey D. K., Singh D. K. and Yadav R. R., Propagation of ultrasonic waves in neptunium monochalcogenides, Appl. Acoust. 72 (2011) 737-741.
- Singh D., Pandey D. K. and Yadawa P. K., Ultrasonic wave propagation in rare-earth monochalcogenides, Cent. Eur. J. Phys. 7 (2009) 198-205.
- Verma A. K., Kaushik S., Singh D. and Yadav R. R., Elastic and thermal properties of carbides of U, Pu, and Am, J. Phys. Chem. Solids 133 (2019) 21-27.
- Bhalla V., Singh D. and Jain S. K., Mechanical and thermophysical properties of rare-earth monopnictides, Int. J. Comput. Mater. Sci. Eng. 05 (2016) 1650012.