Open Access Open Access  Restricted Access Subscription Access

Structural reliability of axisymmetric composite gas storage tanks


Affiliations
1 Laboratoire Energétique, Mécanique et Ingénieries (LEMI) Université M’hamed Bougara de Boumerdes, Boumerdes 35000, Algeria
 

This paper aims to investigate and analyze the effect of uncertainties and fluctuations on the structural reliability of filament wound cylindrical composite gas storage tank using Monte Carlo Simulation method (MCS). A performance function using Tsai-Wu failure criterion, with seven random variables, has been developed wherein the random variables are the three elastic constants of the material (longitudinal modulus E1, the transverse modulus E2 and shear modulus G12), the thickness of the laminate, the radius of the tank, the winding angle and the internal pressure. The safety margin distributions in terms of the coefficients of variation (COVs) of the composite gas storage tank are obtained. The results show that the internal pressure and the winding angle are the main parameters that affect the structural reliability of the tank and the probability of failure increases especially when all the parameters are treated as random. Furthermore, high values of coefficients of variation cause the shrink of the safety margin and can induce the failure of the axisymmetric structure.

Keywords

Structural Reliability, Gas Storage, Composite Tank, Uncertainties, Monte Carlo Simulation
User
Notifications
Font Size

  • P. Francescato, A. Gillet, D. Leh, and P. Saffré, “Comparison of optimal design methods for type 3 high-pressure storage tanks,” Composite Structures, vol. 94, May 2012, pp. 2087–2096, doi:10.1016/j.compstruct.2012.01.018.
  • P. Xu, Y. Zheng, and P. Liu, 2009. “Finite element analysis of burst pressure of composite hydrogen storage vessels,” Materials and design, vol. 30, Aug. 2009, pp. 2295–2301, doi:10.1016/j.matdes.2009.03.006.
  • M. Madhavi, V. Rao and K. Rao, “Design and analysis of filament wound composite pressure vessel with integrated-end domes,” Defence science journal, vol. 59, Jan. 2009, pp. 73–81, doi:10.14429/dsj.59.1488.
  • L. Zu, S. Koussios and A. Beukers, “A novel design solution for improving the performance of composite toroidal hydrogen storage tanks,” International journal of hydrogen energy, vol. 37, Oct. 2012, 14343-14350, doi:10.1016/j.ijhydene.2012.07.009.
  • S. G. Lekhnitskii, “Theory of elasticity of an anisotropic body,” Mir Publishers, 1981.
  • V. Alcántar, M. Aceves, E. Ledesma and E. Aguilera, “Optimization of Type 4 composite pressure vessels using genetic algorithms and simulated annealing,” International journal of hydrogen energy, vol. 42, Jun. 2017, pp. 15770–15781, doi:10.1016/j.ijhydene.2017.03.032. IJASCSE
  • L. S. Sutherland and C. G. Soares, “Review of probabilistic models of the strength of composite materials,” Reliability Engineering & System Safety, vol. 56, Jun. 1997, pp. 183–196, doi:10.1016/S0951- 8320(97)00027-6.
  • A. Béakou and A. Mohamed, “Influence of variable scattering on the optimum winding angle of cylindrical laminated composites,” Composite Structures, vol. 53, pp. 287-293, 2001, doi:10.1016/S0263-8223(01)00012-5.
  • T. K. Hwang, C. S. Hong, and C. G. Kim, “Probabilistic deformation and strength prediction for a filament wound pressure vessel,” Composites. Part B, vol. 34, 2003, pp. 481–497, doi:10.1016/S1359- 8368(03)00021-0.
  • G. Abumeri, F. Abdi, M. Baker, M. Triplet and J. Griffin “Reliability based design of composite over-wrapped tanks,” SAE Technical Paper, Apr. 2007, doi:10.4271/2007-01-1422.
  • B. Cai, Y. Liu, Z. Liu, X. Tian, R. Ji, and H. Li, “Reliability-based load and resistance factor design of composite pressure vessel under external hydrostatic pressure,” Composite Structures, vol. 93, Oct. 2011, pp. 2844–2852, doi:10.1016/j.compstruct.2011.05.020.
  • M. Bouhafs, Z. Sereir, and A. Chateauneuf, “Probabilistic analysis of the mechanical response of thick composite pipes under internal pressure,” International Journal of Pressure Vessels and Piping , vol. 95, Jul. 2012, pp. 7–15, doi: 10.1016/j.ijpvp.2012.05.001.
  • R. H. Lopez, L. F. F. Miguel, I. M. Belo, and J. E. S. Cursi, “Advantages of employing a full characterization method over FORM in the reliability analysis of laminated composite plates,” Composite Structures, vol. 107, Jan. 2014, pp. 635–642, doi: 10.1016/j.compstruct.2013.08.024.
  • A. Hocine, A. Maizia, M. Chérifi, and D. Chapelle, “A contribution of the reliability based approach for cylindrical composite of sensitivity analytical design,” Advances in Materials and Processing Technologies , vol. 3, May 2017, pp. 428–437, doi:10.1080/2374068X.2017.1336883.
  • A. Hocine, A. Maizia, A. Ghouaoula, and H. Dehmous, “Reliability Prediction of Composite Tubular Structure Under Mechanical Loading by Finite Element Method,” Journal of Failure Analysis and Prevention, vol. 18, Sep. 2018, doi:10.1007/s11668-018-0536-z.
  • A. Hocine, D. Chapelle, L. M. Boubakar, A. Benamar, and A. Bezazi, “Analysis of intermetallic swelling on the behavior of a hybrid solution for compressed hydrogen storage - Part I: Analytical modeling,” Materials & Design, vol. 31, May 2010, pp. 2435–2443, doi:10.1016/j.matdes.2009.11.048.
  • L. Solazzi and M. Vaccari, “Reliability design of a pressure vessel made of composite materials,” Composite Structures., vol. 279, Jan. 2022, pp. 114726, doi: 10.1016/j.compstruct.2021.114726.
  • V. Vasiliev, A. Krikanov, and A. Razin, “New generation of filamentwound composite pressure vessels for commercial applications,” Composite Structures, vol. 62, 2003, pp. 449–459, doi:10.1016/j.compstruct.2003.09.019.
  • A. K. Kaw, “Mechanics of Composite Materials,” 2nd ed., Taylor & Francis Group, 2006.
  • S. W. Tsai and E. M. wu, “A General Theory of Strength for Anisotropic Materials,” Journal of Composite Materials, vol. 5, Jan. 1971, pp. 58–80, doi:10.1177/002199837100500106.
  • S. Benammar and K. F. Tee, “Structural reliability analysis of a heliostat under wind load for concentrating solar power,” Solar Energy, vol. 181, Mar. 2019, pp. 43–52, doi:10.1016/j.solener.2019.01.085.
  • S. Benammar and K. F. Tee, “Failure probability analysis of heliostat systems,” International Journal of Critical Infrastructures, vol. 16, Dec. 2020, pp. 342–366, doi:10.1504/ijcis.2020.112037.
  • R. R. Chang, “Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels,” CompositeUTER SCIENCE & ENGINEERING IJAOLUME 11 IStructures, vol. 49, Jun. 2000, pp. 237–243, doi:10.1016/S0263- 8223(99)00133-6.
  • U. Eberle, M. Felderhoff, F. Shüth, “ Chemical and Physical Solutions for Hydrogen Storage,” Angewandte Chemie, vol. 48, Aug. 2009, pp. 6608-6630, doi:10.1002/anie.200806293.

Abstract Views: 91

PDF Views: 70




  • Structural reliability of axisymmetric composite gas storage tanks

Abstract Views: 91  |  PDF Views: 70

Authors

Sid Amer Youcef
Laboratoire Energétique, Mécanique et Ingénieries (LEMI) Université M’hamed Bougara de Boumerdes, Boumerdes 35000, Algeria
Samir Benammar
Laboratoire Energétique, Mécanique et Ingénieries (LEMI) Université M’hamed Bougara de Boumerdes, Boumerdes 35000, Algeria

Abstract


This paper aims to investigate and analyze the effect of uncertainties and fluctuations on the structural reliability of filament wound cylindrical composite gas storage tank using Monte Carlo Simulation method (MCS). A performance function using Tsai-Wu failure criterion, with seven random variables, has been developed wherein the random variables are the three elastic constants of the material (longitudinal modulus E1, the transverse modulus E2 and shear modulus G12), the thickness of the laminate, the radius of the tank, the winding angle and the internal pressure. The safety margin distributions in terms of the coefficients of variation (COVs) of the composite gas storage tank are obtained. The results show that the internal pressure and the winding angle are the main parameters that affect the structural reliability of the tank and the probability of failure increases especially when all the parameters are treated as random. Furthermore, high values of coefficients of variation cause the shrink of the safety margin and can induce the failure of the axisymmetric structure.

Keywords


Structural Reliability, Gas Storage, Composite Tank, Uncertainties, Monte Carlo Simulation

References