Open Access Open Access  Restricted Access Subscription Access

Numerical simulation of tandem solar cells basedCIGS and C-Si sub-cells using SCAPS -1D


Affiliations
1 Department of Electronics, Faculty of Technology, University Mohamed Boudiaf, 28000, M’sila, Algeria
2 Department of Physics, Division of Science & Technology, University of Education, Lahore,, Pakistan
 

Numerical simulation of single junction and tandem solar cells-based copper indium gallium diselenide Cu(In,Ga)Se2 and silicon (c-Si) electrical characteristics have been accomplished by Solar Cell Capacitance Simulator (SCAPS 1-D) tool. The layered structure consisting of CIGS as top cell with a buffer layer of zinc-based oxysulfide Zn(O,S) and the bottom cell of c-Si junction has been investigated. The top and bottom single cells have demonstrated the conversion efficiency as 11.63 and 13.16%, respectively. The tandem designs exhibited a conversion efficiency of 25.68% resulted from the enhanced open-circuit voltage (VOC) as 0.90 V and short-circuit current density (JSC) as 36.99 mA/cm2 . The cells were illuminated via AM 1.5 to investigate the current densities and external quantum efficiency (EQE). The simulations were optimized by adjusting the CIGS concentration and the thickness of semiconducting layers. Moreover, the effect of variation in temperature on the device performance has been investigated.

Keywords

Tandem, SCAPS-1D, Buffer layer, Cu(In,Ga)Se2 material, c-Si.
User
Notifications
Font Size

  • M. A. Green et al., Prog. Photovoltaics, 29 (3) (2021).
  • M. Yamaguchi, Phys. Status Solidi C 12, 489 (2015).
  • W. Shockley and H. J. Queisser, J. Appl. Phys., 32, 510 (1961).
  • M. Yamaguchi et al., Sol. Energy, 79 (78) (2005).
  • M. Yamaguchi, Clean Electricity from Photovoltaics, 2nd ed., edited by M. D. Archer and M. A. Green (Imperial College Press) 307 (2015).
  • L. C. Hirst and N. J. Ekins-Daukes, Prog. Photovoltaics, 19, 286 (2011).
  • M. Yamaguchi et al., J. Phys. D: Appl. Phys, 51, 133002 (2018).
  • S. Essig, et al., Nat. Energy, 2, 17144 (2017).
  • D. Lackner et al., Sol. RRL, 4, 2000210 (2020).
  • M. Carmody et al., Appl. Phys, 96, 153502 (2010).
  • K. Kim et al., Sol. Energy, 145, 52 (2017).
  • M. Valentini, et al., Sol. Energy, 190, 414 (2019).
  • S. Albrechtet al., paper presented at the 36th European Photovoltaic Solar Energy Conference, Marseille, France (2019).
  • R. Lin et al., Nat. Energy, 4, 864 (2019).
  • K. Makita et al., Prog. Photovolt: Res. Appl, 42 (8) (2019).
  • S. Buecheler et al., paper presented at the 7th International Workshop on CIGS Solar Cell Technology, Munich, Germany, (2016).
  • M. Yamaguchi et al., J. Appl. Phys, 129, 240901 (2021).
  • N. Song, et al., Appl. Surf. Sci., 459, 700-706 (2018).
  • F. I. S. E. Systems. ISE. Photovoltaics Report. https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/PhotovoltaicsReport.pdf. (Last access September 1st, 2022).
  • M. Hadjab et al., Int. J. Simul. Model., 42, 179–191 (2022).
  • P. Jackson et al., Prog. Photovolt. Res. Appl. 19, 894- 897 (2011).
  • I. Repins et al., paper presented at the 33rd IEEE Photovoltaic Specialists Conference San Diego. California, 11–16 (2008).
  • C. H. Huang, J. Phys. Chem. Solids, 69, 330–334 (2008).
  • K. Kim et al., Solar Energy, 155, 167–177 (2017).
  • S. Nacer and A. Aissat, Appl. Phys. A, 122:138 (2016).
  • B. Bibi et al., J. Computat. Electron., 20, 1769–1778 (2021).
  • M. R. Mitroi et al., Int. J. Photoenergy, 7284367, 6 (2017).
  • P. Colter et al., Crystals, 8 (12) (2018).
  • M. Burgelman et al., Thin solid films, 361, 527-532 (2000).
  • A. Shalav, et al., Appl. Phys. Lett., 86 (1), 013505 (2005).
  • A. Soheili et al., Optik, 222, 165461 (2020).
  • M. Benaicha et al., J. Semicond. 41, 032701 (2020).
  • A. Herguth, Energy Procedia, 124, 53–59 (2017).
  • K. Amri et al., Energies, 14, 3383 (2021).
  • O. Lundberg et al., Thin Solid Films, 480, 520–525 (2005).
  • S. Shirakata et al., Sol. Energ. Mat. Sol. C., 93, 988– 992 (2009).
  • M. Asaduzzaman et al., Springer Plus, 5, 578 (2016).
  • S.M. Sze and K.K. Ng, Physics of semiconductor devices, John wiley & Sons (2006).
  • S.R. Kodigala, Academic Press (2011).
  • C. W. Chen et al., J. Mater. Chem. A, 3 (29), 14985–14990 (2015).
  • J. Julayhi and T. Minemoto, Physica Status Solidi C, 10 (7), 1026–1030 (2013).
  • J. Li et al., paper presented at the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 1580–1583 (2012).
  • E. Klugmann-Radziemska, et al., Sol. Energ. Mat. Sol. C., 94, 2275–2282, (2010).
  • M. Isah et al., J. Alloy. Compd., 870, 15935 (2021).
  • F.M.T.Enam et al., Optik, 139, 397–406 (2017).
  • S. Sarker et al., Solar Energy, 225, 471–485 (2021).
  • H. Asif, et al., IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 1221–1224 (2020).
  • A. Hoque et al., Proceedings of the International Conference on Mechanical Engineering and Renewable Energy (ICMERE) Chittagong, Bangladesh (2019).

Abstract Views: 181

PDF Views: 73




  • Numerical simulation of tandem solar cells basedCIGS and C-Si sub-cells using SCAPS -1D

Abstract Views: 181  |  PDF Views: 73

Authors

Amina Bouzidi
Department of Electronics, Faculty of Technology, University Mohamed Boudiaf, 28000, M’sila, Algeria
Idris Bouchama
Department of Electronics, Faculty of Technology, University Mohamed Boudiaf, 28000, M’sila, Algeria
Moufdi Hadjab
Department of Electronics, Faculty of Technology, University Mohamed Boudiaf, 28000, M’sila, Algeria
M. A. Saeed
Department of Physics, Division of Science & Technology, University of Education, Lahore,, Pakistan

Abstract


Numerical simulation of single junction and tandem solar cells-based copper indium gallium diselenide Cu(In,Ga)Se2 and silicon (c-Si) electrical characteristics have been accomplished by Solar Cell Capacitance Simulator (SCAPS 1-D) tool. The layered structure consisting of CIGS as top cell with a buffer layer of zinc-based oxysulfide Zn(O,S) and the bottom cell of c-Si junction has been investigated. The top and bottom single cells have demonstrated the conversion efficiency as 11.63 and 13.16%, respectively. The tandem designs exhibited a conversion efficiency of 25.68% resulted from the enhanced open-circuit voltage (VOC) as 0.90 V and short-circuit current density (JSC) as 36.99 mA/cm2 . The cells were illuminated via AM 1.5 to investigate the current densities and external quantum efficiency (EQE). The simulations were optimized by adjusting the CIGS concentration and the thickness of semiconducting layers. Moreover, the effect of variation in temperature on the device performance has been investigated.

Keywords


Tandem, SCAPS-1D, Buffer layer, Cu(In,Ga)Se2 material, c-Si.

References