Open Access Open Access  Restricted Access Subscription Access

Review of Control of MIMO System Using 1Degree of Freedom PID, 2Degree of Freedom PID and Fractional order PID Controller


 

The aim of this work is to style a speed controller of a DC motor by tuning PID controller. To urge an output with minimum errors, we selected PID parameters using bio-inspired optimization technique of Genetic Algorithm. The second order system is employed here for speed control. DC motor is interfaced with Arduino via Motor driver circuitry. Discrete Time Reduced Order GPIO with Genetic algorithm calculates parameter of PID controller and consistent with those parameters Arduino controls DC motor.
User
Notifications
Font Size

  • Yang, J., Wu, H., Hu, L., & Li, S. “Robust Predictive Speed Regulation of Converter-Driven DC Motors Via A Discrete-Time Reduced-Order GPIO” IEEE Transactions on Industrial Electronics, 1–1, 2018.
  • V. M. H. Guzman, R. S. Ortigoza and D. M. Carrillo, “Velocity control of a brushed DC-motor driven by a DC to DC buck power converter,” International Journal of Innovative Computing, Information and Control, vol. 11, no. 2, pp. 509-521, 2015.
  • S. Khubalkar, A. Chopade, A. Junghare, M. Aware and S. Das, “Design and realization of stand-alone digital fractional order PID controller for Buck converter fed DC motor,” Circuits, Systems, and Signal Processing, vol. 35, no. 6, pp. 2189-2211, 2016.
  • G. Rigatos, P. Siano, P. Wira and M. Sayed-Mouchaweh, “Control of DC-DC converter and DC motor dynamics using differential flatness theory,” Intelligent Industrial Systems, vol. 2, no. 4, pp. 371-380, 2016.
  • T. K. Nizami, A. Chakravarty, C. Mahanta, “Design and implementation of a neuro-adaptive backstepping controller for Buck converter fed PMDC-motor,” Control Engineering Practice, vol. 58, pp. 78-87, 2017.
  • S. Malek, “A new nonlinear controller for DC-DC boost converter fed DC motor,” International Journal of Power Electronics, vol. 7, no. 1-2, pp. 54-71, 2015.
  • G. C. Konstantopoulos and A. T. Alexandridis, “Enhanced control design of simple DC-DC boost converter-driven DC motors: Analysis and implementation,” Electric Power Components and Systems, vol. 43, no.17, pp. 1946-1957, 2015.
  • R. S. Ortigoza, J. N. A. Juarez, J. R. G. Sanchez, M. A. Cruz, V. M. H. Guzman and H. Taud, “Modeling and experimental validation of a bidirectional DC/DC Buck power electronic converter-DC motor system,” IEEE Latin America Transactions, vol. 15, no. 6, pp. 1043-1051, 2017.
  • R. S. Ortigoza, J. N. A. Juarez, J. R. G. Sanchez, V. M. H. Guzman, C. Y. S. Cervantes and H. Taud, “A sensorless passivity-based control for the DC/DC buck converter-inverter-DC motor system,” IEEE Latin America Transactions, vol. 14, no. 10, pp. 4227-4234, 2016.
  • S. Mondal and C. Mahanta, “Adaptive second-order sliding mode controller for a twin rotor multi-input-multi-output system,” IET Control Theory Appl., vol. 6, no. 14, pp. 2157-2167, 2012.
  • P. Wen and T. W. Lu, “Decoupling control of a twin rotor MIMO system using robust deadbeat control technique,” IET Control Theory Appl., vol. 2, no. 11, pp. 999-1007, 2008.
  • J. K. Pradhan and A. Ghosh, “Design and implementation of decoupled compensation for a twin rotor multiple-input and multiple-output system,” IET Control Theory Appl., vol. 7, no. 2, pp. 282-289, 2013.
  • J. G. Juang, M. T. Huang, and W.-K. Liu, “PID control using presearched genetic algorithms for a MIMIO system,” IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 38, no. 5, pp. 716-727, 2008.
  • C. W. Tao, J. S. Taur, Y. H. Chang, and C. W. Chang, “A Novel FuzzySliding and Fuzzy-Integral-Sliding Controller for the TwinRotor MultiInput-Multi-Output System,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 893-905, 2010.
  • Bisgaard, M., Harbo, A.L.C., Danapalasingam, K.A.: ‘Nonlinear feedback control for wind disturbance rejection on autonomous helicopter’. The IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, July 2010, pp. 1078–1083.
  • Kiefer, T., Graichen, K., Kugi, A.: ‘Trajectory tracking of a 3DOF laboratory helicopter under input and state constraints’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp.
  • Apkarian, J.: ‘3-DOF helicopter reference manual’ (Quanser Consulting Inc, Canada, 2006)
  • Kutay, A.T., Calise, A.J., Idan, M., Hovakimyan, N.: ‘Experimental results on adaptive output feedback control using a laboratory model helicopter’, IEEE Trans. Control Syst. Technol., 2005, 13, (2), pp. 196– 202
  • Andrievsky, B., Peaucelle, D., Fradkov, A.L.: ‘Adaptive control of 3DOF motion for LAAS helicopter benchmark: design and experiments’. Proc. American Control Conf., New York, USA, July 2007, pp. 3312–3317
  • Rahideh, M.H. Shaheed and H.J.C. Huijberts. “Dynamic Modelling of the TRMS using Analytical and Empirical approaches”, Control Engineering Practice, Volume 16, Issue 3, March 2008, Pages 241-259.
  • Feedback Instruments Ltd, Twin Rotor MIMO System Control Experiments, 33-949S, Laboratory Manual.
  • Youdan Kim and Hen-Seob Kim, “ Eigen Structure Assignment Algorithm for Mechanical systems”,J Guidance vol,22.No 5.
  • T.K Liu and Juang: “A Single Neuron PID Control for Twin Rotor MIMO System”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, , 2009.
  • Lih-Gau luang, Wen-Kai Liu, Cheng-Yu Tsai, “Intelligent Control Scheme for Twin Rotor MIMO System”, Proceedings of the 2005 IEEE International Conference on Mechatronics July 10-12. 2005, Taipei,Taiwan.
  • M. L. Kerr, S. Jayasuriya, S. F. Asokanthan, “QFT based robust control of a single link flexible manipulator,” Journal of Vibration and Control, vol. 13, no. 1, pp. 3-27, 2007.
  • S. M. M. Alavi, M. J. Walsh, and M. J. Hayes, “Robust distributed active power control technique for IEEE 802.15.4 wireless sensor networks-A quantitative feedback theory approach,” Control Engineering Practice, vol. 17, pp. 805-814, 2009.
  • F. Chen, B. Jiang, and C. Jiang,“Self-repairing control for UAVs via quantitative feedback theory and quantum control techniques,” Procedia Engineering,vol. 15, pp.1160-1165,2011.
  • S. F. Wu, and D. Fertin, “Spacecraft drag-free attitude control system design with quantitative feedback theory,” Acta Astronautica, vol. 62, pp. 668-682, 2008.

Abstract Views: 165

PDF Views: 110




  • Review of Control of MIMO System Using 1Degree of Freedom PID, 2Degree of Freedom PID and Fractional order PID Controller

Abstract Views: 165  |  PDF Views: 110

Authors

Abstract


The aim of this work is to style a speed controller of a DC motor by tuning PID controller. To urge an output with minimum errors, we selected PID parameters using bio-inspired optimization technique of Genetic Algorithm. The second order system is employed here for speed control. DC motor is interfaced with Arduino via Motor driver circuitry. Discrete Time Reduced Order GPIO with Genetic algorithm calculates parameter of PID controller and consistent with those parameters Arduino controls DC motor.

References