The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


With the development of technology, studies in fields such as artificial intelligence, computer vision and deep learning are increasing day by day. In line with these developments, object tracking and object detection studies have spread over wide areas. In this article, a study is presented by simulating two different drones, a leader and a follower drone, accompanied by deep learning algorithms. Within the scope of this study, it is aimed to perform a drone tracking with drone in an autonomous way. Two different approaches are developed and tested in the simulator environment within the scope of drone tracking. The first of these approaches is to enable the leader drone to detect the target drone by using object-tracking algorithms. YOLOv5 deep learning algorithm is preferred for object detection. A data set of approximately 2500 images was created for training the YOLOv5 algorithm. The Yolov5 object detection algorithm, which was trained with the created data set, reached a success rate of approximately 93% as a result of the training. As the second approach, the object-tracking algorithm we developed is used. Trainings were carried out in the simulator created in the Matlab environment. The results are presented in detail in the following sections. In this article, some artificial neural networks and some object tracking methods used in the literature are explained.

Keywords

Unmanned Aerial Vehicle, Drone Tracking, Deep Learning, Yolov5, Object Detection.
User
Notifications
Font Size