The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The paper presents feature extraction methods and classification algorithms used to classify maize leaf disease images. From maize disease images, features are extracted and passed to the machine learning classification algorithm to identify the possible disease based on the features detected using the feature extraction method. The maize disease images used include images of common rust, leaf spot, and northern leaf blight and healthy images. An evaluation was done for the feature extraction method to see which feature extraction method performs best with image classification algorithms. Based on the evaluation, the outcomes revealed Histogram of Oriented Gradients performed best with classifiers compared to KAZE and Oriented FAST and rotated BRIEF. The random forest classifier emerged the best in terms of image classification, based on four performance metrics which are accuracy, precision, recall, and F1-score. The experimental outcome indicated that the random forest had 0.74 accuracy, 0.77 precision, 0.77 recall, and 0.75 F1-score.

Keywords

Feature extraction, ORB, HOG, KAZE, Image classification, machine learning, and classifier.
User
Notifications
Font Size