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Abstract   

Objectives: We present two algorithms for image processing; the first is based on Boltzmann sampling and the 
second on entropic sampling.  
Methods: These algorithms come within the Bayesian framework which has three components: 1. Likelihood: a 
conditional density - the probability of a noisy image given a clean image, 2. A Prior and, 3. A Posterior: a 
conditional density - the probability of a clean image given a noisy image. The Likelihood provides a model for 
the degradation process; the Prior models what we consider as a clean image; it also provides a means of 
incorporating whatever data we have of the image; the Posterior combines the Prior and Likelihood and 
provides an estimate of the clean counterpart of the given noisy image. The algorithm sets a competition 
between: 1. The Likelihood that tries to anchor the image to the given noisy image so that the features present 
can be retained including perhaps the noisy ones and, 2. The Prior which tries to make the image smooth, even 
at the risk of eliminating some genuine features of the image other than the noise.  
Findings: A proper choice of the prior and the likelihood functions would lead to good image processing. We 
need also good estimators of the clean image. 
Application: The choice of estimators is somewhat straight forward for image processing employing Boltzmann 
algorithm. For non-Boltzmann algorithm we need efficient estimators that make full use of the entropic 
ensemble generated.  
Keywords: Image processing, Prior, Posterior, Boltzmann sampling, Entropic sampling, Bayesian.  

1. Introduction 

We discuss in this paper two algorithms for image processing: one based on Boltzmann sampling (The 
application of Boltzmann sampling to image analysis was pioneered by Gemen and Gemen [1] and has since 
become an active field of research [2-6]) and the other on non-Boltzmann sampling (Non-Boltzmann sampling 
was pioneered by Torrie and Valleau [7]; their method, called Umbrella sampling, has since undergone a series 
of metamorphoses. We have multi-canonical Monte Carlo algorithm of Berg and Neuhaus [8], entropic sampling 
of Lee [9], and the algorithm of Wang and Landau [10]. A preliminary and incomplete work [11] on the 
application of non-Boltzmann sampling to image restoration, indicated that it has no great advantage over 
Boltzmann sampling). These algorithms are inspired by some recent and not-so-recent developments in Monte 
Carlo simulation of macroscopic systems. We are presently testing these algorithms on a few benchmark 
problems employing Monte Carlo simulation.  The results shall be presented in a future communication. In this 
paper, we confine our attention to describing these algorithms and presenting some details on how to 
implement them.  

We begin with a mathematical description of an image, which forms the contents of section (2). This is 
followed by a brief description of the three basic ingredients of the Bayesian methodology for image processing: 
the Likelihood distribution (Likelihood function models the process of degradation of a clean image  to a noisy 
image X; it is denoted by L(X| ); it is a conditional probability density function: the probability of X given ) [3], 
in section (3), the Prior (The prior is a probability density function; the prior models what we expect or what we 
know of the clean counterpart of the given noisy image [4]) in section (4) and the Posterior (Posterior is 
proportional to the product of the Likelihood and the prior as prescribed by Bayes’ theorem; it is a conditional 
density function P (Θ|X)) in section (5).  
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We then present the canonical partition function (In the context of statistical mechanics of image 
processing, the posterior is called the canonical partition function) [5], probability distributions, marginal 
probability distributions, and threshold posterior mean in section (6). The Metropolis algorithm that generates a 
reversible Markov chain of images which converges to the desired ensemble is described in section (7). 
Boltzmann sampling employed to generate a Markov chain which converges to a canonical ensemble is 
described in section (8). Non Boltzmann sampling that generates micro canonical entropy in the first part of the 
algorithm and an entropic ensemble in the second part, is described in section (9). We also describe how to 
calculate the un-weighting factor to estimate micro canonical ensemble averages and re-weighting factor to 
calculate canonical ensemble averages. In addition we show how to estimate free energy as a function of energy 
for various values of β. From the free energy profiles we estimate optimal values of the two parameters that 
lead to minimum free energy. We contend that these optimal parameters would ensure efficient image 
processing. We conclude the paper with a few remarks in section (10). 

2. Mathematical representation of an image 

Consider an image plane discredited into tiny squares called pixels. Let S be a set of pixels on the digital 
image plane. For convenience of notation we identify the spatial location of a pixel in the image plane by a single 
index i. Also we identify a pixel by its index i. An image can be obtained by painting each pixel belonging to S 
with one of the Q gray levels (we do not consider in this paper colour images; however the algorithms described 
here can be extended to process a colour image [7]); the gray levels are labeled by integers: {0, 1, · · · , Q − 1}.  
Label 0 stands for black and Q − 1 for white. If there are N pixels in S, then in principle we can paint a total of QN 
images. Let Ω denote the image space - a set of all possible images in the image plane.  

Mathematically an image Θ ∈ Ω is represented by a collection of integers. Each integer represents the gray 
level of the corresponding pixel in the digital image plane. The gray level in pixel-i is denoted by θi. Thus,  

 
Θ = {θ i : i ∈ S} 

           Let  
X = {x i: i ∈ S} 

 
Be the given noisy image (Noise enters a digital image by several ways. It can enter while the image is being 

acquired, due to faulty apparatus or an inexperienced photographer; it can enter while storage due to ageing; it 
can enter during transmission through a noisy channel; etc[8]). The basic problem of image processing is simple 
and can be stated as follows: Given a noisy image X ∈ Ω how do we obtain its clean counterpart  ∈ Ω ? 

3. Likelyhood L(X|Ө) 

To answer the question raised at the end of the last section, we first inquire how in the first place the clean 
image  ∈ Ω degraded to its noisy counterpart X∈ Ω? We do not want to get into the details of how to model 
the degradation process, except to say that it can possibly be mathematically encoded in an appropriate 
conditional density called the likelihood function and denoted by the symbol L(X|Θ). Note we never know , 
the clean counter part of X. Hence we take Θ as a possible candidate of ; we ask: if we are given Θ, what is the 
probability of X ? Such a conditional probability density that constitutes the likelihood function is  

 
   L (X|Θ) ∝exp [−β(1 − µ) D(Θ, X)]                                   (1) 
 
In the above 0 < β < ∞ and 0 <µ< 1, are constant parameters to be optimized for best image processing.. We 

shall talk of these parameters later whence their physical meaning would become clear. D (Θ, X) is referred to as 
distance function. The degradation of the image Θ to the given noisy image X is modeled in the distance 
function. For example Poisson degradation leads to Kullback-Leibler distance [12], given by 
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D(Θ, X) = (1 ∕N) ∑(θ i − x i) ln(θ i  ∕x i)                                                (2)  

                                                                      i 
Another useful function that quantifies the separation between two images is called the Hamming [13] 

distance defined as 
 

D(Θ, X) = (1 ∕N) ∑ I (θ i≠ xi)                                 (3) 
                                                                     i                                                                                
In the above, the indicator function is defined as: 
 
               I (η) =      1  if the statement η is true  

                        0  if the statement η is false                 (4) 
 
 

We see that D is just the fractional number of pixels in Θ having gray levels different from those in the 
corresponding pixels of X. For both the Hamming distance and the Kullback-Leibler distance, it is easily verified 
that  

 
1. D(X, Y) ≥ 0 ∀X, Y∈ Ω and equality obtains when X = Y and 

                                               2. D(X, Y) is symmetric in its arguments:   D(X,Y) = D(Y, X). 
 
In addition the Hamming distance obeys the triangular inequality:  
D(X, Y) + D(Y, Z) ≥ D(X, Z) ∀X, Y, Z ∈ Ω. The Kullback-Leibler distance, on the other hand, does not obey the 

triangular inequality. Thus the likelihood which is the probability of X given Θ - tells you how Θ degrades to X 
due to noise. Bayesian methodology helps us construct the reverse - the probability of Θ given X. To this end the 
likelihood is multiplied by a suitable prior, see below 

4. Prior Π (Θ) 

It is one thing to ask for the unknown , the clean counterpart of the given corrupt image X and quite 
another thing to spell out unambiguously what in our opinion constitutes a clean image. Our desire or our 
expectations about a clean image is encoded in the prior distribution, denoted by the symbol Π(Θ). A good 
choice of the prior distribution is 
 

               ∏(Θ) ∝ exp [−βµ Ԑ(Θ)]                   (5)  
 

In the above, Ԑ(Θ) is called the smoothness function. It measures how smooth an image is. The smoothness 
function is defined as,  
 
                                                         Ԑ(Θ) = (1 ∕N) ∑ I (θi≠θj  )                                             (6)  
                                                                                                                              (i, j) 

 
The symbol (i, j) in the above equation indicates that the two pixels i and j are nearest neighbours (two 

pixels that share an edge or a vertex or both constitute a nearest neighbour pair [9]). The sum runs over all the 
distinct pairs of nearest neighbour pixels. Each pixel in the interior of the image plane has eight nearest 
neighbours. By employing periodic boundary conditions in both x and y directions, we ensure that even a pixel 
on the edge or corner of the image plane has eight nearest neighbours. Periodic boundary is equivalent to 
wrapping the image plane smugly on the surface of a torus.  
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When all the grey levels are the same, Ԑ(Θ) = 0, and we get the smoothest image possible. Inevitably a 
realistic image contains features and Ԑ(Θ) > 0. The smoothness function is maximum when each pixel has a gray 
level different from each its eight nearest neighbours. 

5. PosteriorP(Θ|X) 

Once we have the likelihood and the prior, Bayes’ theorem tells you that their product is the desired 
posterior, P(Θ|X). The posterior is a conditional probability density function. It is the probability of an image Θ ∈ 
Ω given the image X∈ Ω. More importantly, the posterior sets the stage for a competition between the prior 
which attempts to make the image smoother and smoother and the likelihood density that tries to keep the 
image pegged to the given noisy image X.  

It is intuitively clear that the images which maximize the posterior stand a good chance of being suitable 
candidates for the clean counter part of the given noisy image. To appreciate this, let us write the posterior 
distribution explicitly, see below. 
 
                                                 P(Θ|X)    ∝  L(X|Θ) Π(Θ)  
                                                                 ∝  exp[−β E(Θ)]                  (7) 

Where,  
                 E (Θ)  =  µԐ(Θ) + (1 − µ) D(Θ, X)                               (8)  
  

In the language of statistical mechanics, E is the energy of the image Θ. β is 1 ∕[kBT] where T is absolute 
temperature and kB is the Boltzmann constant (we set kB to unity [10]) β is thus inverse temperature. A typical 
image processing algorithm attempts to locate the region of the image space Ω in which the posterior is 
maximum. The meaning of µ is now clear.  

Its value determines the relative importance given to the prior that drives the algorithm to those regions of 
Ω containing smooth images and to the likelihood density that tries to keep Θ pegged to X, the given noisy 
image. µ lies in the open interval between 0 and 1. If µ = 1 ∕2, both “smoothening” and “feature-retention” are 
given equal importance; if µ > 1 ∕2, the prior is given relatively more importance than the likelihood.  

The image is likely to become smooth, perhaps even at the risk of losing some of the genuine features. If µ < 
1 ∕2, the likelihood is given more importance. As a result the algorithm tends to retain the features, even the 
noisy ones. Making the right choice of the value of µ is somewhat difficult. A good strategy, at least for the 
beginners, is to optimize µ and β by trial and error.  

6. Canonical partition function and probabilities 

The energy of an image is given by 
 
    E(Θ) = µ Ԑ(Θ) + (1 − µ).D(Θ, X)                     (9) 
 

We consider a canonical ensemble of images at inverse temperature β characterized by Maxwell-Boltzmann 
distribution (Called the posterior in the Bayesian framework [11]) given by, 
 

P (Θ) = (1 ∕Q) exp[−β E(Θ)]       (10) 
 

In the above, Q is called the canonical partition function given by the sum of Boltzmann weight associated 
with each image, see below.  

 
 

Q (β) = ∑exp [−β E(Θ)]        (11)  
                      Θ   

Two possible candidates for  are the Threshold Posterior Mean (TPM) and Maximum Posterior Marginal 
(MPM), defined below.  
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1. Threshold Posterior Mean (TPM) 
We first obtain a set of real numbers    {θ i: i ∈ S},     where 

 
θi = ∑θi(Θ) P(Θ)           (12) 
        Θ 

For each i, let ζ (i) TPM denote the gray level closest to θi. The image constructed with gray  
 
Levels given by ζ (i) TPM d is called the Threshold Posterior Mean (TPM) and is denoted by ΘTPM. 
Mathematically, 
                                                                                         min 

                                  ζ (i)TPM  = arg  ζ  (ζ - θi)2 

 
                    for ζ  = 0, 1, · · · ,Q − 1.                                     (13) 

 
                                    ζTPM = {  ζ(i)

TPM   :  i ∈ S }                         (14)  

2. Maximum Posterior Marginal (MPM)  
 

 We partition the image space Ω into mutually exclusive and exhaustive subsets as follows. Consider a pixel i 
∈ S.  Define Ω(i)

ζ  as a subset of images for which the gray level of pixel-i is   ζ∈[0, Q− 1]: 
  
 Ω(i)

ζ  = {Θ ∈ Ω| θ i(Θ) = ζ }  for ζ = 0, 1, · · · , Q − 1                        (15)  
 

Calculate now Q marginal probability density functions, also called marginal posteriors,  
 
                                        ∏ζ(i) =   ∑ P(Θ)   for ζ = 0, 1, · · ·Q – 1      ∀ Θ ∈ Ω                        (16) 
                                                     Θ ∈ Ω(i)

ζ 
 

Define                                      max 
                                                  ζMPM     =   arg   ζ  ∏ζ

(i)                                                                   (17) 
 

Which stands the ζ that maximizes the marginal density function ∏ζ
(i). In other words ζ(i)

MPM is the gray level 
for which the marginal posterior is maximum. Then the Maximum Posterior Marginal (MPM) image is given by, 
  
              ΘMPM = { ζ (i)MPM : i ∈ S }                                   (18) 
 

We can carry out calculation of TPM and MPM on a set of images generated by suitable Markov Chain 
Monte Carlo (MCMC) methods based on Metropolis algorithm and to this we turn our attention below.  

7. Metropolis rejection algorithm 

Consider images characterized by probabilities P(Θ). Our aim is to generate a large ensemble of images, 
consistent with the given probabilities. To this end, by employing Metropolis rejection algorithm [14], start with 
an arbitrary initial image Θ0 and generate a Markov chain:  

 
       Let Θi be the current image and pi = P(Θi), its probability; we make a change in the current image and 
construct a trial image Θt. For example, select a pixel randomly from the current image, and change its gray level 
to a random value between 0 and Q − 1; this operation results in a trial image Θt. Let pt  = P(Θt). Calculate  
 
    p = min (1, p t ∕pi)                                                                  (19)  
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Generate a random number ξ uniformly and independently distributed between zero and unity. If ξ ≤ p 
accept the trial image and advance the Markov chain to Θ i+1 = Θt. If not, reject the trial image and advance the 
Markov chain to Θi+1 = Θ i. Repeat the process on the image Θi+1; and iterate. Generate a long Markov chain of 
images.  

8. Boltzmann sampling 

Boltzmann sampling obtains when P(Θ) is given by Eq.(10) which describes a canonical ensemble. Notice 
that Metropolis algorithm requires only the ratio of probabilities. It is precisely this property that is responsible 
for the great popularity (Metropolis is considered as one of the great algorithms of the twentieth century [12]) 
of the Metropolis algorithm. 

We carry out Monte Carlo simulation and collect a large sample of images from the asymptotic part of the 
Markov Chain. We carry out averaging over Monte Carlo ensemble to estimate . 

We need to choose appropriate values of β ∈ (0,∞) and µ∈ (0, 1) for processing the given image X. Obviously 
these parameters shall depend on the quantum of noise present in X and the relative importance we want to 
give to the competing criteria of making the given image smooth and retaining its features. A good numerical 
strategy is to carry out small sample simulations at a set of points in the two dimensional parameter space β  
and µ. Examine the processed image and find the values of β and µ which give the best image - an image that is 
smooth and holds all the ”relevant” features of X. 

9. Non-Boltzmann sampling 

          Non-Boltzmann sampling proceeds as follows [15]. Let G(E)dE denote the number of images having energy 
in the interval dE around E. Let Θ be an image and EΘ = E(Θ), its energy. 
We define an ensemble characterized by the probabilities  
  
                                               P(Θ) ∝ 1∕G(EΘ)’                                         (20) 
 

Defined for all the images. Natural logarithm of G(E) is usually called the micro canonical entropy:  
 

                                                S(E) = kB lnG(E)                                   (21) 
 

Where we set kB = 1. We employ Metropolis rejection technique to generate images based on these 
probabilities. The probability of acceptance of a trial image is thus given by, 
 
                                 p = min (1, p t∕p i) = min (1, G (Ei) ∕G (Et))                                                  (22) 
 
See section (7). Note if the trial image belongs to a low entropy region, it gets accepted with unit probability; if 
not, its acceptance probability is less than unity. The ensemble generated by the algorithm will have equal 
number of images in equal regions of energy. In other words, the histogram of energy of the images of the 
ensemble shall be flat. But a crucial point remains: we do not know the function G(E), as yet.  

 
Wang and Landau [10] proposed to estimate G (E) in an initial learning run. We define a function g(E) and set 

it to unity for all E. We also define a histogram of energy H (E) and set it to zero for all E. Start with an initial 
image Θ0. Let E0 = E (Θ0) is its energy. Update g (E0) to α × g(E0) where α is called the Wang-Landau factor, set to 
α0 = e, in the first iteration. Also update H(E0) to H(E0) + 1. Construct a Markov chain of images as per 
Metropolis rejection technique taking the probabilities proportional to 1∕g(E(Θ)). Every time you advance the 
Markov chain, update g and H. Set α = α1 = √α0, reset H (E) = 0 ∀ E and proceed with the second iteration of the 
learning run. The value of α tends to unity upon further iterations. After some twenty five iterations, α = α25 ≈ 1+ 
3×10−7.  

The histogram would be flat over the range of energy of interest. Flatter the histogram, closer is g(E) to G(E). 
We take g (E) at the end of last iteration of the learning run that leads to a reasonably flat histogram, as an 
estimate of G (E). We can define suitable criteria for flatness of the histogram.   
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We first attach a statistical weight of unity to each image of the entropic ensemble. Then we divide the 
statistical weight by     
          P(Θ) = 1 ∕g(EΘ)’                       (23)  
 

This is called un-weighting. Upon un-weighting, the ensemble of weighted images for a given energy 
becomes micro canonical at that energy. In other words, weighted averaging over the images (belonging to a 
given energy) of the entropic ensemble is equivalent to averaging over a micro canonical ensemble for that 
energy. We further re-weight to a canonical ensemble at the desired temperature. To re-weight, we multiply the 
statistical further by exp(−β EΘ). Thus for every image Θ belonging to the entropic ensemble, we have a weight 
factor given by  
     
   W(Θ) = g(EΘ) exp(−β EΘ)                (24)  
 

These weight factors are used in all averaging operations carried out for estimating . An advantage of non-
Boltzmann sampling is that we can estimate a phenomenological free energy as a function of energy for various 
values β and µ from the entropic ensemble, see below.  
 

          F(β, E) = − (1∕ β) ∑ g(E′(Θ)) exp[−β E′ (Θ)] I(E′(Θ) = E)                                        (25) 
                                                                                                        Θ 

Where the sum is taken over the images in the entropic ensemble. From the free energy profiles we can 

estimate  . To this end we need to devise a suitable estimator.  

10. Epilogue 

We have outlined in this paper two algorithms for image processing: the first based on Boltzmann sampling 
and the second on non-Boltzmann sampling. We have not yet tested the algorithms on benchmark problems. 
This work is in progress and preliminary results, not presented here, look encouraging. Non-Boltzmann Monte 
Carlo algorithms are presently being employed widely in statistical mechanics and we believe these will also 
prove useful in image processing. We need efficient estimators of clean image to exploit the full potential of an 
algorithm. For Boltzmann sampling the threshold posterior mean (TPM) and the maximum marginal posterior 
(MPM) have been found quite effective. For non-Boltzmann sampling we need to test the effectiveness of these 
estimators in utilizing the rich information contained in the entropic ensemble.  

Perhaps we need to innovate and devise new estimators to ensure maximum use of the entropic ensembles. 
We believe it is worthwhile investigating these and related algorithms and we contend something useful would 
emerge that would help us process an image better. With this optimistic note, we close this paper.  
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