
Adding Semantic Aspects to Social Software
Engineering for Improve Software Debugging

and Codification Software Engineer’s
Educational Program

Nematallah Ghanavati*

Department of Computer, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran;
ghanavatin@gmail.com

Abstract
Quality assurance in software development is still a challenging process. There are a lot of methods to improve software
quality such as software quality assurance techniques, or conducting formal technical reviews. In this research, we try to
design and implement a social software and reuse ontologies and integration of some of them and provide an environ-
ment to store and analyze the feedback related to functionality of individuals involved in the project, detect the errors
and defects reported during the software development process. It also provides an opportunity to share the data with the
professionals and get their assistance and contributions. With their knowledge about quality assurance, methods for de-
bugging and an appropriate training curriculum to improve the performance of the individuals involved in the project can
be developed, which enhances the verification level and validation of the software which inturn leads to the improvement
of its quality.

Keyword: Software Quality Assurance, Semantic Web, Ontology, Debugging

*Author for correspondence

1. Introduction

Software development is usually a social activity that
involves people from different domains. They have their
particular backgrounds and act under different condi-
tions. The ‘social aspects’ of Software Engineering is
discussed for a long time. But it has been considered
again with a new approach these days. The new interest
is mainly driven by recent phenomenon in online com-
munities and social interactions on the web that is often
known under titles such as ‘social networking’, ‘social
software’ or ‘Web 2.0’14. Understanding these phenom-
ena and ways of their utilization to increase the support
of social interaction in Software Engineering is currently
a main goal in different research efforts.

In this context, the term ‘Social Software Engineering’
(SSE) has been devised to emphasize the importance of
social aspects in software development. One of the main
observations in the SSE is that the concepts, principles,
and technologies built for social software applications
are applicable to software Engineering. Social Software
Engineering focuses on the development of systems
in highly uncertain domains, with evolving goals, fre-
quent changes and much user involvement. It is focused
on community-centered collaboration and uses online
environments to share artifacts and knowledge about a
software product.

In this research, we based on the social software
engineering idea and its combination with pair program-
ming practice in Xp, that its use will improve the quality

Indian Journal of Education and Information Management, Vol 3 (4), 6–12, April 2014
ISSN (Print): 2277-5366

ISSN (Online) : 2277-5374

Nematallah Ghanavati

7Indian Journal of Education and Information Management Vol 3 (4) | April 2014 | http://ijeim.informaticspublishing.com

of software, provide a social environment so that more
specialists or stakeholders can provide their advice and
assistance together in your technical tasks with the eas-
iest way, so that designer and programmer could share
your product likes models and programming code
with specific people for technical reviews and debug-
ging and receive their comments or suggestions. In
fact, in this social environment instead of scheduling a
technical review in the time period, continuous review
of them is possible as creation of products (design or
code). So its advantage is early detection of errors and
finally produce a high quality product. The role of pair
programming on Production of high quality software
and high productivity products has been studied in
research conducted by the William and Kessler19. Also
in this project, in order to achieve more efficiency
of the designed social environment, performe analy-
sis of the data collected in the environment and get
ideas from the experts. So based on them, codification
of appropriate learning resources and curriculum of
courses for individuals involved in the project can be
developed in order to improve their job quality. People
can prevent unauthorized persons from gaining their
products based on privacy approaches in social net-
works, the opportunity for sharing their products are
limited to certain individuals or groups. The imple-
mentation of such decisions as well as access to the
discussions would be possible by project managers.
Because, firstly they are required such data to perform
their management tasks. Second, given that the project
manager and team leaders usually are indirect contact
with the people involved in the project, they can act as
the most appropriate reference to determine the edu-
cational content for your staff.

In addition, this environment makes it possible to
know programmer or designer that his work reviewed
and is discussed by others more widely, to focus more
on their work. Notably, some of the software engineers
argue that the high participation can waste in debugging
and slow the project progress. But the environment is
designed so that developers just by a simple copy of their
works or products in an edit box, use others help to solve
their problems faster in most cases.

In this system, considering the entities (resources)
such as errors specifications, discovered defects, training
courses, proposed topics, requirements list and stake-
holders, we can obtain the necessary feedback during
the formal technical reviews, quality and configuration

audits, documents reviewing, and different SQA activities.
To determine whether the expected functions of the soft-
ware are properly prepared, and has provided needs of
customers and users or no.

Naturally, after finding bugs and defects, they must
be corrected. But correcting a problem itself can cause
additional errors and consequently will cause more
disadvantage. Here, will do items such as finding bugs
causes, finding other bugs that may arise due to this
debugging, and adoption appropriate debugging tech-
nique. In this regard, in this project we have tried to
through the design of a semantic web environment, In
addition to semantic description of errors and defects
in the project provide a social environment to estab-
lish possibility of participating wide variety of people
including analysts, application developers, customers
and other experts in the field of project area in this envi-
ronment. So that, the role of human factors will become
more prominent in the debugging process and generally
software process improvement. As already been dem-
onstrated, any method, tools and attempt for debugging
without the presence of other people which often act as
powerful allies, will not lead to the desired result. As
mentioned earlier, using pair programming practices
that have been proposed as part of the xp program-
ming models and social programming4 leads to improve
software quality. So we provides facilities in this social
environment so effectively uses capabilities of experts
and stakeholders in the process of debugging and overall
software quality assurance.

2. Software Quality Assurance
Software quality assurance is an activity in throughout
the software process and its emphasis is on maintaining
the quality of the software. To reduce duplication work in
software engineering activities. This leads to lower costs
and accelerate delivery time to market. Software qual-
ity assurance includes items such as Technical reviews,
test strategies, methods and tools, software product
management and ensuring compliance with software
development standards in our designed environment,
collect data about errors and defects and then interre-
lated and analyzed them to determine which software
engineering activities or debugging method is best to
eliminate them. In fact it is considered one of the most
important SQAa tasks. Technical reviews are considered
a Software quality assurance

Adding Semantic Aspects to Social Software Engineering for Improve Software Debugging and Codification Software
Engineer’s Educational Program

8 Indian Journal of Education and Information Management Vol 3 (4) | April 2014 | http://ijeim.informaticspublishing.com

as the most effective mechanism to find errors early in the
software process. The main purpose of a technical review
is find errors before being passed onto the next activity or
reach the end user.

Other things that are done in this research is that
according to feedback from performance of software
engineers and programmers and also took assistance
from other knowledge, particularly project managers
and individuals are directly involved in project activities
and supervising the performance of designers and pro-
grammer, Trying to provide solutions such as advice and
proper training codification they will need. Indeed, here
the aim is development the headlines of training courses
more accurate according to individuals capabilities, weak-
nesses and training requirements that have been obtained
from their feedbacks in the project. Until finally can be
seen the enhance of effectiveness software projects indi-
viduals efficiency and increase their productivity.

3. The Role of Ontologies in
Software Engineering
So far, many efforts and activities have been conducted on
the use of ontologies in various phases of software engi-
neering. Omghas provided a new technology called the
ODMb which includes a series of Metamodel to establish a
mapping between the semantic web languages structures
(such as RDF or OWL) and object-oriented modeling
languages structures such as uml.

Other idea that can noted in this field is ontology-
based architecture18 (ODAc). Ontologies have the differ-
ent application areas in Software Engineering. Ontologies
are used during the software development process and
during run-time. In fact, they are based on two catego-
ries. As an example of the first category can be cited
the conceptual model of the problem domain, formal
description of software artifacts such as components
and definitions of mappings between different model-
ing languages. At run-time, ontologies are used as part of
the program logic or as a conceptual layer that supports
system dynamic behavior such as adaptations or compo-
sition of web services and automatic discovery. As well
as, they differ between approaches that use ontologies
to model a domain or system’s context and approaches
where ontologies are part of the system or development
infrastructure itself.

In this research ontologies are used to support the
development of community-oriented quality assurance.

3.1 Related Research
Gerald M. Weinbergis, one of the earliest promoters of
software development as a social activity in the 19718.
He was focused many of his works on engineering
software development processes from the stand point
empowering people. In other words, he believes soft-
ware development is a human driven activity. Because
effective communication can play a key role in software
development6,7. Luiand Chan also have human-centered
approach to software engineering. In10 they offer differ-
ent ways to collaborative programming approach and
show how to combine and coordination these meth-
ods. So they can be used to fixing common problems
of software management such as motivating software
developers, discover the solution patterns, managing
software teams, and deliver IT projects.

So far, several approaches have been proposed in
which the ontology has been used in software develop-
ment. Existing approaches defining its ontology, provide
reuse of ontologies related to software, or provide a
framework or infrastructure that helps for developing the
ontology as a software product. It is also kind of commu-
nity oriented relationship and collaboration that similarly
are implemented, when intending to use dominant pat-
terns at various online environment15.

In this project, our work closely associated to applica-
tions of semantic wikisin software engineering. Semantic
wikis provides an architecture for the establishment
possibility of participation and simultaneously struc-
ture preservation and recognition. They can consider as
an ideal tool for the software engineering community.
However, this area of research is in its in fancy and young.
So far, there are only a limited number of approaches
that have been tried to use the Semantic Wiki in software
engineering13,20.

Recently in this context, in the rise project is being
completed some tasks. Decker and his colleagues pro-
posed the idea of ‘self-organized reuse’. That Software
products in the semantic wiki it can be jointly create and
structured5. Xiao et al.20 present Galaxy Wiki, a wiki based
environment in which programmers can collaboratively
write source code, build projects, and debug defects.

Also in other studies Lohmann and Riechert have been
proposed a semantic wiki based techniques in which have

b Ontology Definition Meta Model
c Ontology Driven Architecture

Nematallah Ghanavati

9Indian Journal of Education and Information Management Vol 3 (4) | April 2014 | http://ijeim.informaticspublishing.com

been useda number of well-known ontologies to represent
activities and products emerged in an online environ-
ment for community-oriented software engineering12. In
research conducted by Bertramand colleagues2 discussed
a bug tracking social system through which helps cus-
tomers, project managers, quality assurance personnel,
and programmers to share knowledge and continuous
communicating. In addition, investigation has also been
conducted to design systems for improve awareness of the
project condition and progress and their participants in
inside and outside of the organization, Such as research
performed by Kadenbach9.

4. Ontologies for Community-
oriented Software Quality
Assurance and Debugging
In Debug wiki project has developed a web-based environ-
ment for community-oriented software quality assurance
and debugging. That several features of social software and
ontology is used to support collaboration between stake-
holders who are geographically distant from each other.
It aims is promote more direct interaction with the larger
group of stakeholders, experts, designers and programmers

in a collection and then the discussion, develop, and
comment on the software errors and defects and related
solutions with focus on software quality assurance. In
Figure 1 shows an image of Debug Wiki project web envi-
ronment where the user interface is conceptually divided
into different parts and each section is described by a set
of ontology concepts. In fact, these concepts are used to
show the achievements related to each section. This web
environment is realizable as on to wiki plugin. Through
its, needed ontologies imported and have been integrated
in a common upper ontology based on Semantic web lan-
guages RDF(s) and OWL1.

5. Representing Bugs and
Training Courses Metadata via
Dublin Core
Errors, defects and training courses can be viewed and
edited participatory by all registered users of the site. In
fact, a bug can only be seen as information source with
well-known properties, such as title, description, and pro-
grammer name that has created the bug.

A collection of fifteen often used properties for the
description of information resources is defined by the

DC+FOAF+SIOCDc:tags

Dc:�tle Dc:descrip�on Dc:subject Dc:creator

Sioc:item Sioc:post Sioctype:comment Sioctype:poll

Tag:name Tags:tag

Sk
os
:c
on
ce

Folksonomy

Taxonomy

Discussion & Comment

Error & Defect

Dc:contributor

Figure 1. Web environments for quality assurance and
community–oriented debugging.

Adding Semantic Aspects to Social Software Engineering for Improve Software Debugging and Codification Software
Engineer’s Educational Program

10 Indian Journal of Education and Information Management Vol 3 (4) | April 2014 | http://ijeim.informaticspublishing.com

‘Dublin Core Metadata Element Set’. We used several of
these properties to semantically annotate Bugs and training
courses in our web environment including title, descrip-
tion, creator, contributor, subject, and source. Because
such metadata is often valuable in the analysis, refinement
and prioritization of Bugs and training courses (e.g., to
get back to the cause(s) of a Bug), maintaining it across
different tools is usually of high interest. Using Dublin
Core instead to describe basic metadata a wide variety of
tools that can be used for accessing and refining the Bugs,
defects and training courses to all tools that are capable
to read and interpret this standard, including non-CASE
tools. Therefore through it, in the web software designed
by us will be possible acquiring and refinement of exist-
ing bugs in the software development process easily. Also,
through the Dublin Core will be provided storage and dis-
play some basic information to control debug operation
and maintain their traceability and record the necessary
information to describe the required educational details
to improve the efficiency of the human factors involved
in the project development. It should be noted, the meta-
data properties defined by Dublin Core are not sufficient
to represent all information that might be captured about
a bug in all possible cases. Nevertheless they provide at
least a major metadata subset that can be valuably reused
in Software Engineering.

To display the extracted data on RDF format should be
used the appropriate vocabulary. Of course, in this project
due to diversity of target data used several vocabularies to
describe them.

6. Representation of Stakeholders,
Developers and Professionals and
Discussions via FOAF and SIOC
Here, we imported the FOAF (‘Friend of a Friend’)
vocabulary for representation Personal information of
Stakeholders, developers, specialists and their interrela-
tions and also Expression of their social.

Communication for example, familiarity with other
people involved in the project1, 3. In particular to achieve
these objectives, we use the FOAF class agent and its
subclasses Person, Group and Organization. However,
further FOAF concepts might be linked in order to rep-
resent additional information about stakeholders, such
as contact details or bugs assigned to specialists. As well
as, the FOAF structure can be exported and visualized

as social graph with appropriate tools. This enables new
possibilities for social network analysis which maybe
useful for Social Software Engineering11. We have
imported the SIOC ontology in order to provide these
online discussions. The account of each stakeholders will
be displayed Via SIOC class User, comment is a subclass
of Post and ratings are represented by the class Poll. Also
Doap ontology has been used for semantic description of
software projects.

7. Integration and Align
Ontologies in the Upper Ontology
How Integration of semantic web ontologies with the
designed upper ontology Seen in Figure 2. A scan be
seen in this Figure, in this Web environment Possibility
of Specialist participation will be provided in Different
activities in the software development process using
SIOC ontology. This Specialist can include project man-
agers, stakeholders, Educational Consultants, etc. These
people through your posts and tagging them, Attempt
to discuss the bugs in project and offer solutions
and Suggested training subheadings to improve their
performance.

In this ontology, some Subtypes are defined to priori-
tize or rankings bugs in terms of importance. To provide
the possibility for advanced reviews of problems.

8. Bugs and Specialists
Classification via Skos and Tags
Skos ontology will be used for description and classifica-
tion software bugs and educational courses information.
In this web environment, this will be done in two different
ways. In the first method, they can either be assigned to
a concept of a pre-defined taxonomy or be equipped with
an arbitrary number of freely chosen keywords (so-called
‘tags’). These tags are aggregated to a ‘folksonomy’16 that
is visualized as ‘tag cloud’16 in the user interface under the
taxonomy tree (see Figure 1) and can be used for naviga-
tion and filtering.

Today’s tagging mechanism was eagerly accepted,
and it has become a significant part of many formal pro-
cesses of software engineering19. Different types of tags
are used by various stakeholders to help the classification
and organize the elements or software products. Tags are
used to support finding duties, express jobs and exchange

Nematallah Ghanavati

11Indian Journal of Education and Information Management Vol 3 (4) | April 2014 | http://ijeim.informaticspublishing.com

information between users. The taxonomy is represented
through the ‘Simple Knowledge Organization System
(SKOS)’. We use the broader and narrower properties to
represent the hierarchical taxonomy structure and the
class definition to add definitions for concepts. SKOS pro-
vides a facility to allow separately display A Classification
of the common problems in the software development
process. A standardized vocabulary like SKOS extends
the range of projects and applications that can easily work
with the taxonomies. Here, the tags of the folksonomy
are represented by the ‘TAGS ontology’. Since we have
defined Tag as a subclass of SKOS Concept, a transforma-
tion between both is easily possible.

9. Conclusion
Many of software engineering aspects especially
domain-independent ones are often already formally
described by well-designed ontologies. Reuse of this

ontologies can be valuable, as we tried to point out in
this article. We have designed an online environment
for community-oriented software quality assurance and
debugging. This general idea is also applicable to other
areas of software engineering.

The key advantage of reuse cross-domain ontologies
is the providing interoperability with further tools.
Including tools that have not been designed specifically
for software engineering. This leads to new opportunities
for utilize, enhance, and analyze artifacts and metadata.
The modular structure of the presented Ontology with its
clear conceptual separation additionally facilitates access
to single, integrated ontologies. However, according to
high degree of ontologies to describe their capabilities
(such as typed links, classes and their characteristics, etc.),
usually all instance data can be accessed by more generic
Semantic Web tools (For example, ontology editors, infer-
ence engines, etc.) and Possibility of further processing is
provided.

Bg:Bug

Bg:Error

Bg:Defecet

Bg: �tle Bg:descrip�on

Bg:programer

Foaf:Group

Foaf:Person

Foaf:Organizat
ion

Foaf:Agent

Soic:User

Soic:Item

Soic:Post

Soictype#poll
Soictype#Comment

Tags:tag

Skos:ConceptDc:Title Dc:Descrip�on

Crs:Course

Crs:�tle

Crs:curriculum Sioc:has_modifier

Sioc:modifi

Doap:Project

Doap:Developer

Doap:Bug-database

Doap:ProgramerDc:Contribu

Dc:Title

Crs:curriculum

Bg:IsCom ente

Skos:Narrower

Skos:broader

Sioc :Abo

Tags:taggedwithtag

Bg:related_bug

Crs:propose

Dc:Sou
Dc:Contributor

Vacabulary:class name

Class:

Property:

Vacabulary:property name

Sub class of property:

Sub property of property:

Bg:Defecet

Bg:Qualityrating

m

Figure 2. The main classes and properties of the designed upper
ontology with integrated and aligned some semantic web ontologies.

Adding Semantic Aspects to Social Software Engineering for Improve Software Debugging and Codification Software
Engineer’s Educational Program

12 Indian Journal of Education and Information Management Vol 3 (4) | April 2014 | http://ijeim.informaticspublishing.com

Reusing ontologies that have been developed by
experts in a particular field, Can lead to avoid the extra
work and modeling efforts and reduce the risk of incor-
rect interpretations and misconceptions. It is noteworthy,
all aspects of software development cannot be covered
by existing ontologies. The ontology presented in this
research describes only a small subset of the many aspect
of software quality assurance. While software quality
assurance has many aspects. However, our goal is not to
describe all aspects of the field. Rather development of an
ontology to formally show the artifacts emerging in an
online environment for society oriented software qual-
ity assurance. However this ontology can be considered
to develop more comprehensive ontologies in the field of
software quality assurance. Thus, future work includes an
extension of our ontology by integrating further Semantic
Web ontologies where applicable and define new domain-
specific concepts into it.

10. References
 1. Allemang D, Hendler J. Semantic web for the working

ontologist: effective modeling in RDFS and OWL. San
Francisco: Morgan Kaufmann; 2008.

 2. Bertram D, Voida A, Greenberg S, Walker R. Com-
munication, collaboration, and bugs: the social nature
of issue tracking in small, collocated teams. CSCW’10.
Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work; 2010. p. 291–300.

 3. Brickley D, Miller L. FOAF Vocabulary Specification
Version 0.98. 2010. Available from: ontogenealogy.com

 4. Dabbish L, Stuart C, Tsay J, Herbsleb J. Social coding in
GitHub: transparency and collaboration in an open soft-
ware repository. Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, ACM; 2012.
p. 1277–1286.

 5. Decker B, Ras E, Rech J, Klein B, Hoecht C. Self-organized
Reuse of Software Engineering Knowledge Supported by
Semantic Wikis. Proceeding of SWESE’05; 2005.

 6. Gerald MW. Becoming a technical leader: an organic prob-
lem–solving approach. Dorset House Publishing; 1986.

 7. Gerald MW. Quality software management (volume
1 to 4) systems thinking, first order measurement,

congruentaction, anticipating change. New York: Dorset
House Publishing; 1994.

 8. Gerald MW. The psychology of computer programming.
Silver Anniversary Edition (anl sub edition). Dorset House
Publishing Company Incorporated; 1998.

 9. Kadenbach D, Kleiner C. Project awareness system–improv-
ing collaboration through visibility. Online Communities
and Social Computing. 2013; 8029:164–173.

10. Lui KM, Chan KCC. Software development rhythms: har-
monizing agile practices for synergy. John Wiley & Sons.
2008.

11. Kramer T, Hildenbrand T, Acker T. Enabling social network
analysis in distributed collaborative software develop-
ment. Software Engineering Workshops. 2009; 150(LNI):
255–266.

12. Lohmann S, Riechert T. Adding Semantics to Social Software
Engineering: (Re) Using Ontologies in a Community-
oriented Requirements Engineering Environment. Soft-
ware Engineering (Workshops), 2010-subs.emis.de.

13. Lohmann S, Rashid A. Fostering Remote User Participation
and Integration of User Feedback into Software
Development. Proceeding of I-USED’08; 2008.

14. Porter J. Designing social web applications. New Riders;
2008.

15. Schummer T, Lukosch S. Patterns for computer-mediated
interaction. Chichester, UK: John Wiley & Sons; 2007.

16. Sinclair J, Cardew-Hall M. The folksonomy tag cloud: when
is it useful? J Inform Sci. 2008; 34(1):15–29.

17. Tetlow P, Pan J, Oberle D, Wallace E, Uschold M, Kendall
E. Ontology driven architectures and potential uses of the
semantic web in systems and software engineering. 2006.
Available from: http://www.w3.org/2001/sw/BestPractices/
SE/ODA/060103/

18. Treude C, Storey MA. Work item tagging: Communic-
ating concerns in collaborative software development
Software Engineering. IEEE Transactions on Software
Engineering. 2012 Jan–Feb; 38. Available from: ieeex-
plore.ieee.org

19. Williams L, Kessler, RR. All I really need to know about pair
programming I learned in kindergarten. Communi-cations
of the ACM. 2000 May; 43(5):108–114.

20. Xiao W, Chi C, Yang M. On-line Collaborative software
development via wiki. WikiSym ‘07: Proceedings of the
2007 International Symposium on Wikis. Montreal, Quebec,
Canada: ACM; 2007. p. 177–183.

