

Indian Journal of Engineering & Materials Sciences Vol. 30, June 2023, pp. 390-395 DOI: 10.56042/ijems.v30i3.3636

A Study of Enhancement in β-phase and Dielectric Properties of Fe₂O₃ Reinforced in PVDF Nanocomposite Thin Films

Krishna Tewatia^{a*}, Anuradha Sharma^a, Arun Kumar^a, Kaushal Kumar^a, Sohan Lal^b, & Lakshmi Sowjanya Pali^c

^aJ C Bose University of Science and Technology, YMCA, Faridabad 121 006, India

^bNational Institute of Technology, Kurukshetra 136 119, India ^cVIT-AP University, Andhra Pradesh 522 237, India

Received: 10 May 2023; Accepted: 31 May 2023

Development of renewable energy resources can be an alternate source of fossil fuels and helpful in the reduction of pollution present in the environment. Having outstanding physical and chemical properties, polymer nanocomposites with enhanced piezoelectric properties are appropriate candidates for the development of renewable energy devices. Magnetite Iron oxide (II) Fe_2O_3 is a narrow band gap metal oxide reinforced in Polyvinylidene Fluoride (PVDF) by solution casting method at 0.8, 1.6, 2.4 and 3.2wt.%. Dielectric and optical properties of nanocomposite thin films are analysed by impedance analyser and UV-visible spectroscopy. FTIR and RAMAN are used to analyse the enhancement in β -phase of nanocomposite thin films. Various parameters such as absorption coefficient, skin depth, optical density, electrical conductivity, and dielectric constant are calculated for the prepared samples. A significant increase in dielectric constant and β -phase is found after the reinforcement of Fe₂O₃ embedded in PVDF nanocomposite thin films are suitable candidates for piezoelectric nanogenerators and pressure sensing devices.

Keywords: Nanocomposite Thin Films, Dielectric Properties, Metal Oxides, RAMAN Spectroscopy

1 Introduction

Energy harvesters are a good alternate source for the production of energy in recent time due to crises of energy and limited non-renewable sources. They collect ambient energy, which is present in the environment as vibrations, movements, light, heat, and magnetic energy. Due to the rise in wearable electronic gadgets, energy harvesting has recently been considered suitable for renewable energy devices¹. In some situations, flexible self-powered gadgets can reduce their reliance on batteries by converting ambient energy into usable energy. Such portable gadgets can be made by piezoelectric materials which can generate energy by pressure or vibrations. There are many polymers like polyvinyl chloride (PVC), polyamide 11 (PA 11), PVDF and poly (vinylidene fluoride)-hexafluoro propylene (PVDF-HFP) having piezoelectric properties and can be used for energy harvesting. Being a thermoplastic semicrystalline polymer, polyvinylidene fluoride (PVDF) is an appropriate candidate to use in piezoelectric devices. PVDF is a light weight, low

*Corresponding author (E-mail: kuntalkrishna111@gmail.com)

cost, flexible and low-density polymer. PVDF has five phases with different chain arrangements α , β , γ , δ and $\epsilon^{2,3}$. β and γ phases are responsible for the piezoelectric properties of PVDF. To achieve the electroactive β and γ phases in PVDF, several attempts have been made, including mechanical stretching, melt quenching, applying electric field, electro spinning, and many others^{4,5,6}. β -phase has largest spontaneous polarization, specific chain arrangement indicating the highest ferroelectric, piezoelectric and pyroelectric behaviour. Various methods such as nucleating filler, solvent casting, phase transition and co-polymerisation can be used for the synthesis of nanocomposite films. Addition of nanoparticles to PVDF matrix can increase the β -phase and dielectric permittivity for the possible use in piezoelectric energy storage devices. The α -phase highest thermodynamic stability having and paraelectricity, is frequently employed for painting and insulating due to its poor heat conductivity, low chemical and thermal resistance. The δ -phase exhibits ferroelectric behaviour and polar phase. The α -phase can be transformed into the polar β and γ -phase by many methods. They are extensively used in sensors,

batteries, actuators, and energy collecting systems⁷. Also, the electroactive β -phase of polymer can be improved by addition of ferrite nanoparticles, hydrated ionic salts TiO₂, BaTiO₃, and clays^{8,9,10}. Mechanical properties can be improved by enhancement of interfacial stability between polymer and nanoparticles. Ionic conductivity also can be enhanced by reducing the crystallinity of the host polymer and interaction between the polar groups of the metal and the electrolyte ionic species.

To enhance the optical, dielectric, and electrical characteristics of polymer nanocomposites, iron oxide may be a good candidate for polymer nanocomposites. Iron oxide occur in a variety of forms with various stoichiometry and crystalline phases hematite (Fe), wurzite (FeO), magnetite (Fe_3O_4) , maghemite $(-Fe_2O_3)$, and $(-Fe_2O_3)$. Metal oxide Fe_2O_3 is a thermodynamically stable semiconductor material. It is inexpensive, stable at high temperatures, and naturally non-toxic¹¹.Various works Al/Fe₂O₃/PVDF composites¹², PVDF membrane with Fe₂O₃ particles and multi wall carbon nano tubes (MWCNT)¹³, α -Fe₂O₃/PVDF-HFP¹⁴, Chi@Fe₂O₃-PVDF-based filtration¹⁵, transition metal oxide/PVDF composites¹⁶, electrode¹⁷, α-Fe₂O₃@PVDF maghemite/PVDF nanogenerators are reported in literature. Martins et al. found that PVDF/ferrite nanocomposites, 90% of the β-phase was achieved by melt processing along with addition 5 wt% of CoFe₂O₄ and 50 wt% of NiFe₂O₄¹⁸. Prabhakaran et al. noted that 0.14 wt% of ferrite concentration causes the maximum polarization and magnetization values. This optimum composition reveals good ferroelectric and piezoelectric response¹⁹.

Goncalves et al. reported that the incorporation of $15 \text{nm Fe}_2\text{O}_3$ nanoparticles enhanced the nucleation and the β -phase²⁰. Ouyang et al. revealed that addition of magnetite nanoparticles increases the storage modulus in nanocomposites. They also found that the incorporation of 2wt% iron oxide in polymer enhanced the piezoelectric properties around five times with the applied strength of the electrical field at 35MV/m^{21} . Only limited number of authors has been worked on

the optical and dielectric properties of Fe₂O₃/PVDF nanocomposite thin films. Fe₂O₃ can be used for improving optical characteristics because of its high refractive index and band gap (2.2 eV) in the visible spectrum. It has been considered a worthy candidate for several optical applications. The incorporation of Fe₂O₃ nanoparticles in PVDF causes the charge distribution and transportation of the dielectric components, ultimately enhancing the conductivity of the host polymer. Furthermore, changes in the piezoelectric, magnetic and dielectric response of the nanocomposites are found to be influenced by the concentration of iron-oxide nanoparticles. Here, we have focused on the reinforcement of Fe₂O₃ in PVDF by simple solvent casting method at different wt.%. Absorption coefficient (α), skin depth (δ), optical density, dielectric constant, electrical and optical conductivity are calculated by UV visible data. FTIR and RAMAN spectroscopy are used to find the change in phase of nanocomposite thin films. β -phase and dielectric properties are improved after addition of Fe₂O₃ nanoparticles.

2 Materials and Methods

The synthesis route for the preparation of Fe_2O_3 reinforced PVDF nanocomposite is schematically shown in Fig. 1. Iron rust is collected from waste material and washed several times with deionised water. Dried iron rust is mechanically ground with mortar pastel for six hours. The collected iron oxide particles are reinforced in prepared PVDF solution with DMF at 0.8, 1.6, 2.4 and 3.2wt.%. The solution is stirred for 10 hours and probe sonicated for two hours. Final solution is poured on a glass slide cleaned by acetone and ethanol. The poured solution is dried in hot air oven at 110° C for three hours. The dried nanocomposite thin films are peeled off with help of doctor blade. The free standing thin films are shown in Fig. 1.

Shimadzu UV-Visible (UV-Vis) Spectroscopy records absorbance and reflectance data for the purpose of studying various optical and electrical properties. PerkinElmer FTIR is used to study the

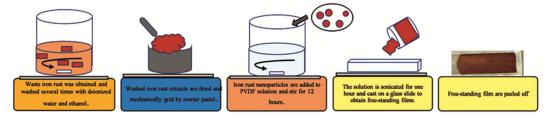


Fig. 1 — Schematic diagram of synthesis of Fe₂O₃/PVDF nanocomposite thin films.

change in phase of nanocomposite thin films. A two probe LCR meter (Hioki 3532-50 LCR Hitester) at room temperature is used to measure the capacitance value to calculate the dielectric constant and dissipation factor.

3 Results and Discussion

3.1 UV-visible spectroscopy

Figure 2 shows absorption spectra and Fig. 3 shows the band gap of Fe₂O₃ nanoparticles. The direct band gap of particles is calculated by using equation (1) by Tauc's plot^{22,23}. The direct band of Fe₂O₃ nanoparticles is found to be 2.08eV. Figure 4(a) illustrates how the absorption coefficient (α) of nanocomposite thin films varies with wavelength (λ).

 α is maximum at the highest concentrations at shorter wavelengths and progressively diminishes as wavelength rises. Due to the greater absorption of Fe₂O₃ nanoparticles, α increases as Fe₂O₃

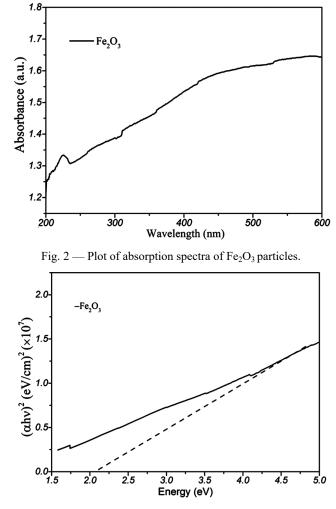


Fig. 3 — Plot of band gap of Fe_2O_3 particles.

concentrations rises. Equation (2) may be used to compute α , which was found to be strongly influenced by the film thickness and absorption. Thin films, in comparison to bulk materials^s, exhibit greater improvement in α . At larger concentrations, the maximum value of α is obtained 724 around 320nm.

$$(\alpha hv) = B(hv - E_g)^n \qquad \dots (1)$$

$$\alpha = \frac{\ln(\frac{t_0}{1})}{t} = -\frac{\ln(T)}{t} = 2.303 \left(\frac{A}{t}\right) \qquad \dots (2)$$

The nanocomposite film's transmittance reduces when the amount of Fe_2O_3 is increased, as seen in Fig. 4(b). In the visible range, transmittance is constant, but it decreases in the UV range and rises in the near IR region. The decreased transmittance could be due to the Rayleigh scattering of light by Fe_2O_3 nanoparticles. Other factors that may influence the transmittance spectra of nanocomposite thin films include the film's roughness, particle dispersion, refractive index, and interactions between polymers and Fe_2O_3 .

$$\delta = \frac{1}{\alpha} \qquad \dots (3)$$

$$D_{opt} = \alpha t \qquad \dots (4)$$

Skin depth and optical density varies as shown in Fig. 4(c) and (d). The measurement of the wave penetration into the film is measured by a physical phenomenon known as skin depth of a material. A reduction in skin depth reveals the penetration of EM wave absorption inside the nanocomposite thin films²⁵.

$$\sigma_{opt} = \frac{\alpha \eta c}{4\pi} \text{ and } \sigma_e = \frac{2\pi}{\eta c} \qquad \dots (5)$$

Additionally, significant connections between skin depth, UV ray energy, and Fe₂O₃ content was observed. As the amount of Fe₂O₃ rises in the current investigation, the skin depth decreases and is reported as 0.00143 at 3.2eV for 4wt%. In low energy areas, skin depth is maximum, and diminished in high energy region. Optical density has smaller values in low energy regions but increase in higher energy regions. The optical density depends on the film's thickness and absorption coefficient. The optical density was found to be 2.68 at 1.85eV for 4wt.% of Fe₂O₃ particles. Optical and electrical conductivity can be calculated by equation (5) as shown Fig. 4(e) and (f). It is observed that optical conductivity has a direct relation with the refractive index and the absorption coefficient. Optical conductivity gives

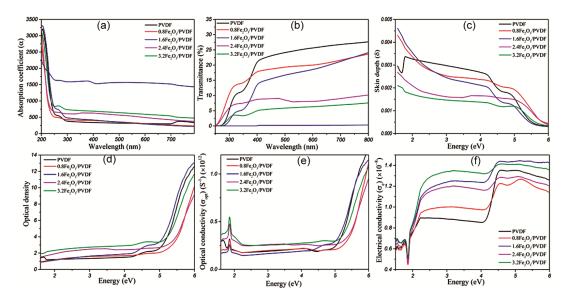


Fig. 4 — Plot of (a) absorption coefficient (α), (b) transmittance spectra, (c)skin depth (δ), (d) optical density, (e) optical conductivity and (f) electrical conductivity of Fe₂O₃/PVDF nanocomposite thin films.

Table 1 — Variation of Absorption coefficient, optical density, skin depth, β fraction, optical and electrical conductivity with different						
wt.% of Fe ₂ O ₃ .						

Sample	Absorption coefficient (α)	Optical density	Skin depth	Optical conductivity (×10 ¹²)	Electrical conductivity (×10 ⁻⁸)	β fraction	Dielectric constant
PVDF	371	1.32	0.00288	0.3127	0.8826	71.37694	14.73
0.8wt.%Fe ₂ O ₃ /PVDF	421	1.59	0.00247	0.3104	1.000	73.04388	15.13
1.6wt.%Fe ₂ O ₃ /PVDF	469	1.61	0.00232	0.2728	1.24	79.70738	15.01
2.4wt.%Fe ₂ O ₃ /PVDF	604	2.45	0.00159	0.4724	1.195	76.64808	15.18
3.2wt.%Fe ₂ O ₃ /PVDF	724	2.68	0.00143	0.5484	1.34	80.29197	15.38

information on the electrical behaviour of the material and the redistribution of charge during interactions with light. With increasing Fe₂O₃ content, optical conductivity increases until it reaches a maximum of 5.48×10^{11} at 4wt.%. In the low energy region, optical conductivity is highest at ~ 1.85 eV; as energy rises it starts to decline and further increases in higher energy regions. The existence of impurities can lead to interband transition, and certain peaks in optical conductivity indicate that electromagnetic waves have penetrated deeply. Fe₂O₃ nanoparticle reinforcement results in an improvement in conductivity because of more charge transfer excitations occurring inside the nanocomposite films. In addition to having an effect on absorption coefficient, surface shape also affects the variation in conductivity. Electrical conductivity and refractive index have an inverse relationship²⁶.It decreases in the low energy region and rises in the high energy region. The Fe₂O₃ nanoparticles act as centres for the scattering and trapping of the charged carriers. Because more charge carriers are being trapped when the concentration of nanofillers increases, electrical

conductivity falls. Higher electrical conductivity is caused by improved interfacial contact between the structure of the nanocomposite and the nanofillers, which results in increased charge transfer.

3.2 FTIR and RAMAN analysis

Figure 5 shows the FTIR spectra of nanocomposite thin films of doped and undoped PVDF. The nanocomposite films show distinctive absorption bands at 840, 1175, and 1279cm⁻¹ referred to as the piezoelectric crystalline phase. The β-phase content of the PVDF polymer was improved by addition of Fe₂O₃ nanoparticles. The PVDF crystallizes most strongly in the β phase at 1175cm⁻¹ when Fe₂O₃ is added, although the γ -phase. crystallization at 1234 cm⁻¹ also increases with the same dopant ratio²⁷. Both heterogeneous nucleation and isothermal crystallization of PVDF nanocomposite are enhanced by the presence of Fe₂O₃ nanoparticles. By limiting the mobility of polymer chains, it affects the crystallization as filler concentration rises. For α , β , and γ phases, specific peaks can be utilized to determine the relative amount

of each phase for both identification and quantification. In our case 440, 480, 837, 875, 1170 and 1400cm⁻¹ peaks occur for β -phase formation. Peaks at 510, 610 and 764cm⁻¹ represent the α phase and 1232cm⁻¹ for γ -phase. β -phase was noted enhanced and more stable. β -phase improve up to 80% for 3.2wt.% Fe₂O₃. Infrared absorption bands at 764 and 837cm⁻¹, which are indicative of the α and β phases, were used to calculate the amount of α and β phase materials contained in each sample respectively. Equation (6) may be used to compute the β phase fraction, F (β).

$$F(\beta) = A_{\beta} / \left(\frac{K_{\beta}}{K_{\alpha}} A_{\alpha} + A_{\beta} \right) \qquad \dots (6)$$

Figure 6 shows the RAMAN spectra of $Fe_2O_3/PVDF$ thin films. Raman spectra indicate a formation of β -phase at 512, 837 and 1074cm⁻¹ peaks.

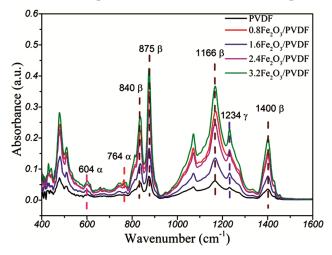


Fig. 5 — FTIR spectra of Fe₂O₃/PVDF nanocomposite thin films.

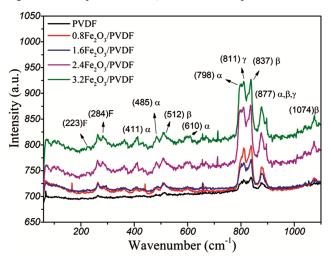


Fig. 6 — RAMAN spectra of Fe₂O₃/PVDF nanocomposite thin films.

Peaks at 410, 485, 610 and 798cm^{-1} occur due to presence of α -phase. In addition, a common peak at 877cm^{-1} appear for α , β and γ phases. Raman scan shows that β -phase are stabilized in films. Peaks induced by the metal oxide Fe₂O₃ are present at 223 and 284cm^{-1} . However, the Raman image intensity increased along with the amount of Fe₂O₃, and the impact of crystallinity was noted. Additionally, the FTIR pictures and Raman images are in perfect agreement.

3.3 Dielectric analysis

Figure 7 illustrates the dielectric behaviour of nanocomposites as a function of frequency. At a concentration of 3.2wt% of nanoparticles, the dielectric constant for Fe₂O₃/PVDF thin films is 15.38. This increase in the dielectric constant value of the nanocomposite is the result of interfacial polarization with charge accumulation and short-range dipoledipole interactions at the Fe₂O₃/PVDF film interface with the electrical field. The dielectric constant is impacted by the frequency-dependent decrease in aligned dipole number. The dipoles also lag the applied electric field at higher frequencies. The augmentation of the dielectric constant value is influenced by interfacial area per unit volume of the nanoparticle²⁸. average polarization and Greater interparticle interaction result from lower interparticle distance per unit volume at higher interfacial areas. Additionally, the inclusion of Fe₂O₃ nanoparticles, which also help to increase the dielectric constant, enhances the beta phase of the PVDF. Figure 8 shows the plot of dissipation factor with frequency. Dissipation factor first decrease and increase further at higher frequencies.

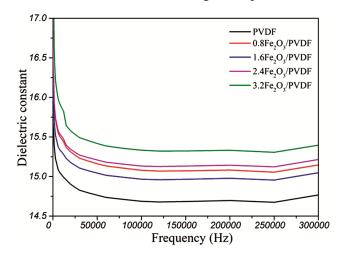


Fig. 7 — Plot of dielectric constant of $Fe_2O_3/PVDF$ nanocomposite thin films.

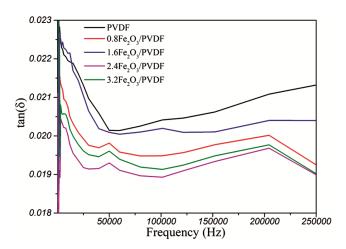


Fig. 8 — Plot of dissipation factor of $Fe_2O_3/PVDF$ nanocomposite thin films.

4 Conclusions

This article reports a simple and cost-effective method for preparation of Fe₂O₃/PVDF nanocomposite thin films. UV visible, FTIR, RAMAN and dielectric measurement are used to analyze the effect of Fe₂O₃ nanoparticles on optical, piezoelectric, and dielectric properties The direct bandgap of Fe₂O₃is 2.1eV as obtained from UV-Vis spectroscopy and enhancement in absorption coefficient, optical density, optical and electrical conductivity. Skin depth decreases and is found to have application in EMI shielding. FTIR and RAMAN spectra confirm the enhancement in β -phase responsible for piezoelectric properties. β-phase improves up to 80% for 3.2wt.% filler. Dielectric constant was noted to be improved after reinforcement of Fe₂O₃ and increase with increases in concentration of filler. Dielectric constant was found to 15.38 at higher concentration. Fe₂O₃/PVDF nanocomposite thin films have considerable applications in piezoelectric and energy storage devices.

References

- 1 Fatma B, Bhunia R, Gupta A, Verma A, Verma V, Garga A, ACS Sustainable Chemistry & Engineering, 7 (2019) 14856.
- 2 Salimi A & Yousefi A, J Polym Sci Part B, 42 (2004) 3487.

- 3 Pramod K P, Mohamed A, Yee Phang I & Liu T, Polym Int, 54 (2005) 226.
- 4 Scheinbeim J I, Newman B A & Sen A, Macromolecules, 19 (1986) 1454.
- 5 Wang J, Li H, Liu J, Duan Y, Jiang S, & Yan S, *J Am Chem* Soc, 125 (2003) 1496.
- 6 Pickford T, Gu X, Heeley E L & Wan C, *Cryst Eng Comm*, 21 (2019) 5418.
- 7 Pan Z, Wang M, Chen J, Shen B, Liu J, & Zhai J, Nanoscale, 10 (2018) 16621.
- 8 Mendes S F, Costa C M, Caparros C, Sencadas V & Lanceros-Me'ndez S, J Mater Sci, 47 (2012) 1378.
- 9 Patro T U, Mhalgi M V, Khakhar D V & Misra A, Polymer, 49 (2008) 3486.
- 10 Martins P, Costa C M & Lanceros-Mendez S, Appl Phys A, 103 (2011) 233.
- 11 Zotti G, Schiavon G, Zecchin S & Casellato U, J Electrochem Soc, 385 (1998).
- 12 Lee J H, Kim S, Hun Lee J, Jin Kim S, Soo Park J & Hak Kim J, Macromol Res, 24 (2016) 909.
- 13 Lovinger A J, Science, 220 (1983) 1115.
- 14 Bhatt P, Upadhyay A, Bhatt R, Yusuf S M, AIP Conference Proceedings, 2115 (2019) 030567.
- 15 Ohgo K, Zhao C, Kobayashi M & Asakura T, Polymer, 44 (2003) 841.
- 16 Chai M, Tong W, Wang Z, Chen Z, & An Y, Zhang Y, J Hazard Mater, 430 (2022) 128446.
- 17 Park J E, Shin J H, Oh W, Choi S J, Kim J, Kim C, & Jeon J, *Toxics*, 10 (2022) 98.
- 18 Xu L, Sitinamaluwa H, Li H, Qiu J, Wang Y, Yan C, Li H, Yuan S, & Zhang S, J Mater Chem A, 5 (2017) 2102.
- 19 Prabhakaran T & Hemalatha J, Mater Chem Phys, 137 (2013) 781.
- 20 Goncalves R, Martins P M, Caparros C P & Martins, M, J Non Cryst Solid, 361 (2013) 93.
- 21 Ouyang Z W, Chen E C & Wu T M, Materials, 8 (2015) 4553.
- 22 Qayoom M, Bhat R, Shah K A, Pandit K H, Firdous A, & Dar G A, J Electron Mater, 49 (2020) 2.
- 23 Al-Ramadin Y, Opt Mater, 14 (2000) 287.
- 24 Benchaabane A, Hajlaoui M E, Hnainia N, Tabbakh A A, Zeinert A, & Bouchriha H, Opt Mater, 102 (2020) 109829.
- 25 Pasha A & Ab d El -Rehim A F, Ceram Int, (2022) 1.
- 26 Yousaf M, Khan M J I, Kanwal Z, Ramay S M, Shaikh H, & Salim M, Polym Bull, 79 (2022) 9975.
- 27 Ongun M Z, Paral L, Oguzlar S & Pechousek J, J Mater Sci Mater Electron, 31 (2020) 19146.
- 28 AlAhzm A M, Alejli M O, Ponnamma D, Elgawady Y & Maadeed M A A A, J Mater Sci Mater Electron, 32 (2021) 14610.