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An exploration to justify the need for an air-ring around an air-bearing is done by comparing the dynamic stability plots 

of a rotor supported by air-bearings with and without an air-ring. Air-bearing with air-ring or air-ring bearing has pocketed 

feed-holes. The air-bearing without air-ring has plain feed-holes and it is referred to as air-bearing with a direct feeding 

system. A linearized free-vibration model rotor-bearing is used to analyze the dynamic stability. The dynamic coefficients of 

air-bearing with a direct feeding system and air-ring bearing are affected by whirl frequency due to the fluid compressibility 

effects. The stability threshold speed of the rotor air-ring bearing system is increased well above the threshold speed of the 

rotor air-bearing with a direct feeding system. The rotor critical mass of the rotor air-ring bearing system is smaller than that 

of the rotor air-bearing with a direct feeding system. The air-ring of air-ring bearing can prevent self-excited vibration in 
lightly loaded rotor-bearing systems. 
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threshold speed 

1 Introduction 

Air bearings are suitable for supporting high-speed, 

lightly loaded rotors such as micro-gas turbines, heat 

pumps, injection systems in automotive engines, 

grinding machines, special machine tools, gyros, 

magnetic heads in computer hard discs, dental drills, 

and micro-air vehicles, etc. 

The following two kinds of dynamic instabilities 

are considered to design a journal air bearing for a 

given rotor
1
: synchronous whirl and self-excited 

whirl. Gross
2
 proved using both theory and 

experiments that the self-excited whirl was more 

predominant in air-lubricated bearings than in oil-

lubricated bearings. Most of the research attempts on 

air bearings have been to analyze and evaluate this 

second kind of dynamic instability. Dynamic 

stability analysis of a symmetrical and flexible rotor 

supported by plain cylindrical gas bearings which in 

turn were mounted on flexible and damped supports 

was reported.
3
 Three different methods such as the 

frequency response method, nonlinear orbit 

approach, and response to a step-jump method were 

used to determine the stability of a gas-lubricated 

tilting-pad journal bearing.
4
 Powell & Tempest

5
 

demonstrated that an introduction of an O-ring as 

bushing support resulted in self-excited whirl 

stabilization. The use of air as compared to a 

conventional lubricant such as oil has a detrimental 

effect on air-bearing operations. The lower viscosity 

and smaller damping capacity of air result in self-

excited vibration.
6
 A linearized theory of self-excited 

vibration analysis on noncircular bearings and 

flexibly mounted bearings was presented.
7
 

Majumdar
8
 derived an equation of angular whirl 

frequency by a stability analysis of a rotor-bearing 

system with O-rings-supported bushings. The 

analytical results of Majumdar
8
 were in good 

agreement with the experimental findings of Powell 

& Tempest
5
. In a parametric study of conical whirl 

instability on porous gas journal bearings
9
, at the 

threshold condition, the angular velocity of the 

journal center  was determined to lie between 0.498 

and 0.504 of the angular velocity of the rotor ω.  

Otsu et al.
10

 investigated the dynamic instability of 

a rigid rotor supported by aero-static bearings with 

compound restrictors. Bonello & Pham
11

 presented a 

generic technique for the transient nonlinear dynamic 

analysis and the static equilibrium stability analysis of 

a turbomachine running on foil air bearings. Arghir 

et al.
12

 examined the pneumatic hammer instability in 

an aero-static bearing with shallow recesses and 

orifices using computational fluid dynamics analysis 

and experiments on a floating bearing test rig. Xiao 

et al.
13

 analyzed aero-static journal millimeter-scale 
—————— 
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micro-bearings with the perspectives of restriction, 

structure, and operation parameters. Several novel 

designs of aerostatic bearings such as Sixsmith, 

bushing with tangential orifices, and dual gas film or 

externally-pressurized journal air-bearing (AB) with 

an air-ring (AR), or air-ring bearing (ARB) (Fig. 1) 

were proposed.
14

 Zeise & Schweizer
15

 made the 

dynamic stability analyses of a rotor supported by air 

foil bearings where a rigid ring separates the air film 

from the elastic foil structure. 

Brzeski & Kazimierski
16

 explained the configuration 

of an ARB and its general operating principle. 

Kazimierski & Trojnarski
17

 presented the theoretical 

models for computing the mass flow rate of air through 

the plain feed-hole and the pocketed feed-hole in ARB. 

Czołczyński et al.
18

 analyzed the dynamic response of 

ARB to a step-change in force. A single-degree-of-

freedom approach for determining the dynamic 

coefficients (DC), such as stiffness coefficients and 

damping coefficients, of ARB, was presented by 

Czołczyński.
19

 In a single-degree-of-freedom approach, 

the geometric center of the journal (CGJ) was prescribed 

to follow a simple harmonic motion (SHM) to determine 

the DC of AB, by fixing the position of the bushing 

center (CGB). Similarly, by securing the position of CGJ, 

CGB was allowed to follow an SHM to determine the 

DC of AR. In this approach, analysis for the pressure (p) 

distribution in the AB and AR regions (Fig. 1) were 

made by solving Reynolds’ equation separately in each 

region, and thereby their DC were determined 

separately. The range of values of DC for an ARB that 

would enable dynamic stability of a symmetrically 

loaded, rigid rotor was estimated by Czołczyński et al..
20

 

Czołczyński
21,22 

presented the results of numerical 

experiments on the dynamic stability of the rotor air-ring 

bearing system (RARBS). By following the methods of 

Czołczyński
22

, Muthanandam et al.
23,24

 presented the 

analysis of an ARB. 

The previous studies
16–24 

analyzed the dynamic 

stability of RARBS and the rotor air-bearing with a 

direct feeding system (RABDFS). In these studies, the 

DC of ARB and the DC of air-bearing with a direct 

feeding system (ABDFS) were determined using a 

single-degree-of-freedom approach. Muthanandam & 

Thyageswaran
25

 determined the DC of ARB using a 

two-degrees-of-freedom approach. This paper 

analyzes the dynamic stability of the RARBS and the 

RABDFS where the DC of ARB and the DC of 

ABDFS are determined using the two-degrees-

freedom approach. In a two-degrees-of-freedom 

approach, the motion of CGB is linked to the motion 

of CGJ. The differential equations of motion of air, 

through the feed-hole passages, AR, and AB regions 

were solved via a three-dimensional computational 

fluid dynamics analysis. The DC of AR and AB were 

determined simultaneously. 
 

2 Materials and Methods 
 

2.1 Dynamic stability analysis of ARB 
 

2.1.1 Outline 

The objective of this paper is to ascertain the need 

for an AR in an AB. In this paper, a comparative 

study of the dynamic stability against self-excited 

whirl of a balanced, rigid, and light-weight rotor 

having symmetrical loading (Fig. 2) supported by the 

following types of air-bearings is carried out: (a) ARB 

(Fig. 3) and (b) ABDFS (Fig. 4).  

The dynamic stability analysis is made when the 

rotor of RARBS rotates at ω and occupies a static 

equilibrium position as shown in Fig. 1. The static 

equilibrium position of the CGJ is OJ. It is defined in 

terms of eccentricity (e) and attitude angle (α) as 

 𝑒J
0 , 𝛼J

0 . In this condition, the CGB occupies OB. It is 

defined in terms of e and α as  𝑒B
0 , 𝛼B

0 . The 

components of static load-carrying capacity are 

 𝐹J
 𝑥  0 , 𝐹J

 𝑦  0   and  𝐹B
 𝑥  0 , 𝐹B

 𝑦  0  . The 

subscripts J and B in 𝐹J
 𝑖  0  and 𝐹B

 𝑖  0  are used to 

indicate the bearing forces in direction i, on journal 

and bushing respectively. i can be x or y.  

 
 

Fig. 1 — Air-ring bearing at static equilibrium conditions. 
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The dynamic stability of the RABDFS and the 

RARBS are verified by solving the equations of 

free-vibration of the RABDFS and the RARBS 

respectively. A complete dynamic stability analysis 

requires the determination of DC at all ω and  in the 

range of 1  ω (rad s
-1
)  2565.6 and 1   (rad s

-1
) 

 1282.8. ωmax = 2565.6 rad s
-1
 corresponds to the

maximum rotor speed, Smax = 24500 RPM (see

Table 1). Since the problem considered here investigates

self-excited vibration or half-frequency whirl,  max =

ωmax/2 = 1282.8 rad s
-1
. Since the dynamic stability of a

rotor AB system depends on the DC of an AB and again

since the DC depend on ω and , either a map of the DC 

(Type1 dynamic stability map) or a map of ω and  (Type 

2 dynamic stability map) can be arrived at by solving the 

equations of motion. These maps dictate the range of DC 

(for Type 1) and the range of ω and  (for Type 2), at 

which the rotor AB system is dynamically stable. 

2.1.2 Geometrical configuration of air-ring bearing 

Figures 2 & 3 show the RARBS being analyzed in 

this research. The rotor (R) of mass mR is supported on 

the ARB, as shown in Fig. 2. Figures 3(a) & 3(b) show 

the longitudinal section and the cross-section of the 

ARB, respectively. The ARB consists of two cylindrical 

bushings (B) of total mass mJB joined with each other 

using connectors to form a joint-bushing (JB). The joint-

bushing is assembled with a casing (C) with a clearance 

fit using rubber seals and rubber baffles. Parts B and C 

have radial feed-holes for supplying compressed air to 

the ARB. There are two rows of feed-holes, with eight 

feed-holes per row. The first row of feed-holes is 

provided in C and B at distances of L/6 and L/4, 

respectively, where L is the length of the journal bearing 

(see Fig. 3(a)). The second row of feed-holes is provided 

in C and B at 5L/6 and 3L/4, respectively. Air at supply 

pressure ps enters the feed-holes provided in C before it 

flows through the AR and into the feed-holes in B. It 

then flows in the AB and is exhausted into the 

Fig. 2 — Rotor air-bearing system. 

Fig. 3 — (a) Longitudinal-section of air-ring bearing (Detail A of Fig. 2), (b) Cross-section of air-ring bearing (Section B-B of 

Fig. 3(a)) & (c) Cross-section of feed-hole (Detail C of Fig. 3(a)). 

Table 1 — Rotor air-bearing system configurations 

RABDFS RARBS 

mR (kg) 3.42 3.42 

Id,R (kg m2) 0.0283 0.0283 

Ip,R (kg m2) 0.0012 0.0012 

mJB (kg) 0.925 0.925 

Id,JB (kg m2) 0.0076 0.0076 

l (m) 0.09 0.09 

DJ (mm) 20 20 

L (mm) 20 20 

cAB (μm) 11 11 

DB (mm) — 44 

cAR (μm) — 15 

DC (mm) 100 100 

r 2 2 

n 8 8 

do (mm) 0.1 0.1 

ho (mm) 0.1 0.1 

hdo (mm) 0.16 0.16 

dc (mm) — 0.9 

hc (mm) — 1 

dFH, AB (mm) 0.5 0.5 

dFH, AR (mm) — 4 

 (rad) — 0.1047 

β (rad) — 0.3403 

ps (bar) 7.01 7.01 

Ts (K) 333 333 

Smax (RPM) 24500 24500 
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atmosphere through the bearing ends. ps is selected 

based on the delivery p of a commercially available 

screw compressor. Figure 3(c) shows the geometry of 

the feed-hole in B and C. 

2.1.3 Geometrical configuration of air-bearing with a direct 

feeding system 

Figure 4 shows the ABDFS. Figures 4(a) & 4(b) 

show the longitudinal section and the cross-section of 

the ABDFS, respectively. The rotor (R) of mass mR is 

supported on the ABDFS, as shown in Fig. 2 except 

that the bushing of the ABDFS is rigidly mounted 

with the casing (C). Part C has radial feed-holes for 

supplying compressed air to the AB. There are two 

rows of feed-holes, with eight feed-holes per row. The 

first row and the second row of feed-holes are 

provided in C at distances of L/4 and 3L/4, 

respectively, where L is the length of the journal 

bearing (see Fig. 4(a)). Air at ps enters the feed-holes 

provided in C before it flows through the AB and is 

exhausted into the atmosphere through the bearing 

ends. ps is selected based on the delivery p of a 

commercially available screw compressor. Figure 4(c) 

shows the geometry of the feed-hole in C. 

The details of the geometry and operating 

conditions of RARBS and RABDFS configurations 

are given in Table 1. 

2.1.4 Determination of dynamic coefficients of RABDFS and 

RARBS 

The system constants mR, mJB, and the DC of AB, 

AR, and elastomeric support (ES), i.e., KAB, KAR, KES, 

CAB, CAR, CES, respectively, are used to characterize 

the idealized RARBS. The rotor load 𝑃R = 𝑚R𝑔 2 
and the joint-bushing load 𝑃JB = 𝑚JB 𝑔 2  (see Fig. 5).

The bushing support (BS) shown in Fig. 5 has two 

elements such as AR and ES which operate in a 

parallel arrangement as shown in Fig. 6(a). The DC of 

BS, AR, and ES are related by KBS = KAR + KES and 

CBS = CAR + CES. The DC of ES were measured in 

314.2   (rad s
1

)  6283.2 and reported by Smalley 

et al.
26

 and Al-Bender et al.
27

. Measurements on 

various sizes of O-rings made of materials such as 

Viton 75, Viton 90, Kalrez 4079, and Kalrez 6375 

show that KES,avg = 10.542  10
6
 N m

1
 and CES,avg =

5531.5 N s m
1

. Muthanandam & Thyageswaran
25

 

showed that 𝐾AR ,avg
 𝑥𝑥 

= 31.152  10
6
 N m

1
 and 

𝐶AR ,avg
 𝑥𝑥  

= 23181.8 N s m
1

 in 340.3   (rad s
1

)  

1282.2. Thus, it is found that the DC of ES are 

smaller than the DC of AR reported by Muthanandam 

& Thyageswaran
25

, i.e., KES,avg/KAR,avg= 0.3384 and

CES,avg/CAR,avg= 0.2386. The results of DC of AR 

justify the simplification assumptions KBS  KAR and 

CBS  CAR made in the two-degrees-of-freedom 

procedure presented by Muthanandam & 

Thyageswaran
25

. Hence, for evaluating the stability of 

RARBS in this paper, only the DC of AR is 

Fig. 5 — Idealized physical model of RARBS. 

Fig. 4 — (a) Longitudinal-section of air-bearing with a direct feeding system (Detail A of Fig. 2), (b) Cross-section of air-bearing with a 

direct feeding system (Section A-A of Fig. 4(a)), (c) Cross-section of feed-hole (Detail B of Fig. 4(a)). 
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considered and the DC of ES is neglected. i.e., KBS  

KAR and CBS  CAR as shown in Fig. 6(b). These 

approximations to KBS and CBS are done to simplify 

the two-degrees-of-freedom approach which involves 

only a fluid dynamic analysis. If the DC of seals and 

rubber baffles (see Fig. 3) are also considered then a 

combined fluid-structural dynamic analysis would 

become necessary. Such an exercise has not been 

attempted in this research. 

At time t = 0 of a two-degrees-of-freedom 

approach
25

, the transient-state simulation (TSS) starts 

from the static equilibrium position of CGJ (OJ) and 

CGB (OB) as shown in Fig. 6(c). The incremental 

displacements of CGJ at any t are: 𝑥J 𝑡 = 𝑋J 𝑡 −

𝑋J 0 , 𝑦J 𝑡 = 𝑌J 𝑡 − 𝑌J 0 . Similar expressions can 

be set up for CGB measured about the static 

equilibrium position. Together, these form the 

elements of xJ, yJ, xB, and yB. The TSS consists of two 

stages: In stage 1, CGJ is simulated to follow an SHM 

i.e., xJ (t) = A sin ( t) with yJ (t) = 0. In stage-2, xJ (t) 

= 0 with yJ (t) = A sin ( t). Due to the movement of 

CGJ, the instantaneous distribution of p around the 

bushing in both AB and AR shall determine the 

instantaneous position of the CGB i.e.,  𝑋B 𝑡 , 𝑌B 𝑡  . 

When the TSS is conducted with a time-step  
∆𝑡 = 2𝜋  𝜈𝑁  , where N is the number of time steps 

in one period, it provides data to form the vectors of 

incremental displacements: xJ, yJ, xB, yB; incremental  

velocities: x J , y J , x B , y B ; and absolute dynamic load-

carrying capacities: FJ
 𝑖𝑗  

, FB
 𝑖𝑗  

. The superscripts i and 

j in FJ
 𝑖𝑗  

 and FB
 𝑖𝑗  

 are used to indicate the bearing 

forces on the journal and bushing respectively, in 

direction i when CGJ moves along direction j. The 

procedure of computing FJ
 𝑖𝑗  

 and FB
 𝑖𝑗  

 in the two-

degrees-of-freedom solution approach was explained 

by Muthanandam & Thyageswaran
25

. There are N+1 

elements in xJ, i.e., xJ (tn) = {xJ(t0), xJ(t1), xJ(t2), … 

xJ(tN)}, where tn = nt and n = 0, 1, 2 … N. Velocity 

x J and acceleration x J can then be found from xJ by 

time-differentiation. Similar N+1 elements can be 

envisaged for yJ, xB, yB,  y J , x B , y B , y J , x B , y B , FJ
 𝑖𝑗  

, 

and FB
 𝑖𝑗  

. Components of incremental dynamic  

load-carrying capacity fJ
 𝑥𝑗  

 and fJ
 𝑦𝑗  

 are: 𝑓J
 𝑥𝑗  

 𝑡 =

𝐹J
 𝑥𝑗  

 𝑡 − 𝐹J
 𝑥  0  and 𝑓J

 𝑦𝑗  
 𝑡 = 𝐹J

 𝑦𝑗  
 𝑡 −

𝐹J
 𝑦  0 , where j can be x or y. Similar sets of 

expressions can be written for fB
 𝑥𝑗  

 and fB
 𝑦𝑗  

. Time-

series of incremental displacement, incremental 

velocity, and incremental load-carrying capacity 

obtained by TSS are used to evaluate the DC of AR 

and AB in a coupled manner.
25

  

The superscripts i and j in DC of AB and AR are 

used to indicate the bearing forces of AB and AR 

respectively, in direction i when CGJ moves along 

direction j. The superscripts i and j in DC can be x or 

y as in Fig. 5; for example, when i is x and j is 

y, 𝐾AR
 𝑖𝑗  

= 𝐾AR
 𝑥𝑦  

, 𝐶AB
 𝑖𝑗  

= 𝐶AB
 𝑥𝑦  

 etc. The DC of ARB 

depend on 𝐹J
 𝑦  0 , 𝐹B

 𝑦  0 , ω, and , and can be 

used to form the equations of motion of the journal 

and bushing. The equations of motion of the rotor and 

the joint-bushing around their static equilibrium 

positions in the RARBS have been derived 

elsewhere.
28

 The analyses of these equations of 

motion are done using a state-space form, a set of the 

first-order ODE, one for each state.
28

 Upon solving 

these equations, the stability of the rotor supported in 

the ARB near its static equilibrium position can be 

analyzed, and ωDSB of the rotor can be determined. 

The DC of ABDFS depend on 𝐹J
 𝑦  0 , ω, and , and 

can be used to form the equations of motion of the 

journal. Upon solving these equations, the stability of 

the rotor supported in the ABDFS near its static 

equilibrium position can be analyzed, and ωDSB of the 

rotor can be determined. 

Determining the DC of an AB at all ω and  in its 

operating range would be impractical if not 

 
 

Fig. 6 — Idealized physical model of RARBS (Showing stage-1 of transient-state simulation of two-degrees-of-freedom approach). 
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impossible. The DC of an AB at any ω and  in its 

operating range can be estimated by following the 

steps: (a) Determining the DC of AB at all sets of M 

selected values of ω and N selected values of  in the 

operating range using the two-degrees-of-freedom 

approach presented by Muthanandam & 

Thyageswaran
25

; (b) Estimating the DC at any ω and 

 in its operating range by following a procedure  

of two-dimensional interpolation for (ω, ) using  

M  N sets of DC. An interpolation procedure
22

 using 

a finite Fourier series of ω and  is employed in this 

research. 
 

2.1.5 Dynamic stability analyses of RABDFS and RARBS 

The dynamic stability analysis is made by scanning 

ω and ν in the range of 1  ω (rad s
-1

)  2565.6 and 1 

  (rad s
-1

)  1282.8. ωmax = 2565.6 rad s
-1

 

corresponds to the maximum rotor speed, Smax = 

24500 RPM (Table 1). Since the problem considered 

here investigates self-excited vibration or half-

frequency whirl, max = ωmax/2. 
 

Calculation procedure for type 1 dynamic stability map of 

RABDFS when elastomeric support is introduced between the 

bushing and the casing 

When elastomeric support (ES) is introduced 

between the bushing and the casing of an ABDFS, the 

type 1 dynamic stability map of the DC of ES can be 

obtained. The calculation procedure is as follows (see 

Fig. 7): 

i. mR, mJB, Id,R, Id,JB, Ip,R, and l (see Table 1) are 

defined. 

ii. There are 25 sets of (ω, ) where the DC of AB 

are determined by following the two-degrees-of-

freedom solution procedure presented by 

Muthanandam
28

. 

iii. The initial values of DC of ES for bushing, 

𝐾ES
 𝑥𝑥 

 and 𝐶ES
 𝑥𝑥 

, ω, and  are assigned.  

iv. Using the map of identified DC of AB at  

M selected values of ω and N selected values of 

 in the operating range, the DC of AB at any ω 

and  are calculated.
28

  

v. Using the DC of ES and AB, eigenvalues  

 =  ± i are computed.
28

 

vi. Steps (4) and (5) are executed by incrementing ω, 

, and the DC of ES. If  = max and ω = ωmax then 

the values of DC of ES are incremented. ∆𝐾ES
 𝑥𝑥 

 

and ∆𝐶ES
 𝑥𝑥 

 are dictated by the scale of 𝐾AR
 𝑥𝑥 

 and 

𝐶AR
 𝑥𝑥 

 presented by Muthanandam & 

Thyageswaran
25

. 

vii. At given 𝐾ES
 𝑥𝑥 

 and 𝐶ES
 𝑥𝑥 

, if  > 0 and ω  ωLDSB, 

the lower dynamic stability threshold speed, then 

the value of ω is incremented. Steps (4) and (5) are 

executed. If  > 0 then the rotor-bearing system 

is dynamically unstable at the given ω and  for 

the given DC of ES and AB.  

viii. At a given 𝐾ES
 𝑥𝑥 

 and 𝐶ES
 𝑥𝑥 

, if  < 0 then the rotor-

bearing system is dynamically stable at the given ω 

and  for the given DC of ES and AB.ω = ωLDSB.  

ix. At a given 𝐾ES
 𝑥𝑥 

 and 𝐶ES
 𝑥𝑥  

, if  < 0 and  

ω > ωLDSB then the value of ω is incremented. 

Steps (4) and (5) are executed.  

x. At a given 𝐾ES
 𝑥𝑥 

 and 𝐶ES
 𝑥𝑥 

, if  > 0 and ω > 

ωLDSB then the rotor-bearing system is 

dynamically unstable at the given ω and  for 

the given DC of ES and AB. ω = ωUDSB, the 

upper dynamic stability threshold speed. 

xi. The maps of DC of ES for bushing, 𝐾ES
 𝑥𝑥  

 and 

𝐶ES
 𝑥𝑥 

, for which the rotor-bearing system is 

dynamically stable at all ω and  in the operating 

range is arrived at. 

 
 

Fig. 7 — Calculation procedure for type 1 dynamic stability map 

of DC of ES for RABDFS. 
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Calculation procedure for type 2 dynamic stability 

map of RARBS 

The calculation procedure, for the type 2 dynamic 

stability map of RARBS, is as follows (Fig. 8): 

i. mR, mJB, Id,R, Id,JB, Ip,R, and l (Table 1) are defined.  

ii. There are 25 sets of (ω, ) where the DC of AB 

and AR are determined by following the two-

degrees-of-freedom solution procedure presented 

by Muthanandam & Thyageswaran
25

.  

iii. The initial values of ω and  are assigned.  

iv. Using the map of identified DC at M selected 

values of ω and N selected values of  in the 

operating range, the DC of AB and AR at any ω 

and  are calculated.
28

  

v. Using the DC of AB and AR,  =  ± i are 

computed.
28

  

vi. ω is incremented and steps (4) and (5) are executed.  

vii. At a given ω, if  > 0 and   LDSB, the lower 

dynamic stability threshold frequency, then the 

value of  is incremented. Steps (4) and (5) are 

executed. If  > 0 then the rotor-bearing system 

is dynamically unstable at the given ω and  for 

the given DC of AB and AR.  

viii. At a given ω, if  < 0 then the rotor-bearing 

system is dynamically stable at the given  for 

the given DC of AB and AR.  = LDSB.  

ix. At a given ω, if  < 0 and  > LDSB then the 

value of  is incremented. Steps (4) and (5) are 

executed.  

x. At a given ω, if  > 0 and  > LDSB then the 

rotor-bearing system is dynamically unstable at 

the given  for the given DC of AB and AR.  = 

UDSB, upper dynamic stability threshold 

frequency.  

xi. At a given ω, if  > 0 for all  then the rotor-

bearing system is dynamically unstable for the 

given DC of AB and AR. ω = ωDSB, stability 

threshold speed. 

xii. The maps of ω and  for which the rotor-bearing 

system is dynamically stable are arrived at.  

Calculation procedure for rotor critical mass and 

whirl frequency at the threshold of dynamic instability 

at a given speed 

The dynamic stability analysis is made when the 

rotors of RABDFS and RARBS rotate at ω and 

occupy  𝑒J
0 , 𝛼J

0 . In the RARBS, the bushing occupies 

 𝑒B
0 , 𝛼B

0 . Let the rotor be excited to whirl about this 

condition with a . If the vibration amplitude remains 

constant with time as in a neutral stable condition, 

then the rotor is at the threshold of dynamic 

instability. The rotor mass, for which it remains in a 

neutral stable condition at ω, is known as the rotor 

critical mass (mR,C). Stability threshold whirl 

frequency, DSB, and mR,C are determined by varying  

over a given range 1    max where max = ωmax/2. 

The determinant of the overall system of equations of 

motion can be arrived at
3
 as given below. 

 

 
𝐴 𝐵
𝐶 𝐷

 = 0                                                                          … (1) 

 

where  
𝐴

= 𝐾AB ,ND
 𝑥𝑥 

+ 𝑖𝜍𝐶AB ,ND
 𝑥𝑥 

−
𝜅

1 −
𝜅

𝐾AR ,ND
 𝑥𝑥  

−𝐾R ,ND  
𝑚 JB ,ND

2
 𝜅+𝑖𝜍𝐶AR ,ND

 𝑥𝑥  

 

 

𝐵 = 𝐾AB ,ND
 𝑥𝑦  

+ 𝑖𝜍𝐶AB ,ND
 𝑥𝑦  

 
 

𝐶 = 𝐾AB ,ND
 𝑦𝑥  

+ 𝑖𝜍𝐶AB ,ND
 𝑦𝑥  

 

𝐷

= 𝐾AB ,ND
 𝑦𝑦  

+ 𝑖𝜍𝐶AB ,ND
 𝑦𝑦  

−
𝜅

1 −
𝜅

𝐾AR ,ND
 𝑦𝑦  

−𝐾R ,ND  
𝑚 JB ,ND

2
 𝜅+𝑖𝜍𝐶AR ,ND

 𝑦𝑦  

 

 
 

Fig. 8 — Calculation procedure for type 2 dynamic stability map 

of RARBS. 
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The non-dimensional (ND) DC of AB and AR are: 

𝐾AB ,ND
 𝑖𝑗  

= 𝑐AB 𝐾AB
 𝑖𝑗  

 𝑝a𝐿𝐷J   

𝐶AB ,ND
 𝑖𝑗  

= 𝑐AB 𝜔𝐶AB
 𝑖𝑗  

 𝑝a𝐿𝐷J   

𝐾AR ,ND
 𝑖𝑗  

= 𝑐AB 𝐾AR
 𝑖𝑗  

 𝑝a𝐿𝐷J    and 

𝐶AR ,ND
 𝑖𝑗  

= 𝑐AB 𝜔𝐶AR
 𝑖𝑗  

 𝑝a𝐿𝐷J    

where the superscripts i and j can be x or y. The 

frequency ratio, 𝜍, and the speed ratio, 𝜛 are:  
𝜍 = 𝜈 𝜔 , 𝜛 = 𝜔 𝜔n , and the non-dimensional 

bushing mass, 𝑚JB ,ND = 𝑚JB   𝐿 𝐷J  
2
𝑚R  . Since the 

RABDFS and RARBS consist of rigid rotors, the 

stiffness of the rotor, 𝐾R,ND = ∞, 𝜅 =  𝜛𝜍 2, and 

𝜛 =  𝑚R𝑐AB 𝜔2  𝑝a𝐿𝐷J   
1 2 

. 

In the RABDFS, the bushing is rigidly mounted on the 

casing. Hence, 𝐾AR ,ND
 𝑖𝑗  

= ∞ and 𝐶AR ,ND
 𝑖𝑗  

= ∞. Equating 

the real and the imaginary parts of Eq. (1) to zero, 
 

𝜅 =
𝐾AB ,ND

 𝑥𝑥 
𝐶AB ,ND

 𝑦𝑦  
+ 𝐾AB ,ND

 𝑦𝑦  
𝐶AB ,ND

 𝑥𝑥  
− 𝐾AB ,ND

 𝑥𝑦  
𝐶AB ,ND

 𝑦𝑥  
− 𝐾AB ,ND

 𝑦𝑥  
𝐶AB ,ND

 𝑥𝑦  

𝐶AB ,ND
 𝑥𝑥  

+ 𝐶AB ,ND

 𝑦𝑦    

… (2) 
 

 𝐾AB ,ND
 𝑥𝑥 

− 𝜅  𝐾AB ,ND
 𝑦𝑦  

− 𝜅 − 𝐾AB ,ND
 𝑥𝑦  

𝐾AB ,ND
 𝑦𝑥  

− 𝜍2  𝐶AB ,ND
 𝑥𝑥  

𝐶AB ,ND
 𝑦𝑦  

− 𝐶AB ,ND
 𝑥𝑦  

𝐶AB ,ND
 𝑦𝑥  

 = 0       … (3) 

 

 in 𝜍 is varied over 1    max. 𝜅 is computed using 

Eq. (2) for each . If the computed 𝜅 at any 

𝜈 satisfies Eq. (3) then 𝜈 = 𝜈DSB . 𝑚R,C  is computed 

using 𝜈DSB =  𝐾B 𝑚R,C  
1

2  where the effective 

stiffness coefficient of bearing, 𝐾B  is found from 

𝜅 = 𝑐AB 𝐾B  𝑝a𝐿𝐷J  . 

In the case of RARBS, Eq. (1) reduces to, 
 

𝐶B,ND

=
−𝜅2𝜍𝐶AR ,ND

 𝑖𝑗  

 𝐾AR ,ND
 𝑖𝑗  

−  1 + 𝑚JB ,ND  𝜅 
2

+  𝐶AR ,ND
 𝑖𝑗  

𝜍 
2     … (4) 

 

𝜅 =
𝐾AR ,ND

 𝑖𝑗  
𝐶B,ND + 𝜍𝐶AR ,ND

 𝑖𝑗  
𝐾B,ND

𝐶B,ND  1 + 𝑚JB ,ND  + 𝐶AR ,ND
 𝑖𝑗  

𝜍
                      … (5) 

 

where the effective stiffness coefficient, 𝐾B  is found 

using: 𝐾B,ND = 𝑐AB 𝐾B  𝑝a𝐿𝐷J  .  
 

𝐸4

+  

1

4
 𝐾AB ,ND

 𝑥𝑥 
− 𝐾AB ,ND

 𝑦𝑦  
 

2
+ 𝐾AB ,ND

 𝑥𝑦  
𝐾AB ,ND

 𝑦𝑥  

−
𝜍2

4
 𝐶AB ,ND

 𝑥𝑥 
− 𝐶AB ,ND

 𝑦𝑦  
 

2
− 𝜍2𝐶AB ,ND

 𝑥𝑦 
𝐶AB ,ND

 𝑦𝑥  
 𝐸2 

 

−  
𝜍

4
 𝐾AB ,ND

 𝑥𝑥 
− 𝐾AB ,ND

 𝑦𝑦  
  𝐶AB ,ND

 𝑥𝑥 
− 𝐶AB ,ND

 𝑦𝑦  
 

+
𝜍

2
 

𝐾AB ,ND
 𝑥𝑦  

𝐶AB ,ND
 𝑦𝑥  

+𝐾AB ,ND
 𝑦𝑥  

𝐶AB ,ND
 𝑥𝑦  

  

2

= 0                             …   (6) 

 

𝐾B,ND

=
1

2

 
 
 

 
 

 𝐾AB ,ND
 𝑥𝑥 

+ 𝐾AB ,ND
 𝑦𝑦  

 

−

𝜍   
𝐾AB ,ND

 𝑥𝑥  
−𝐾AB ,ND

 𝑦𝑦  

2
  𝐶AB ,ND

 𝑥𝑥 
− 𝐶AB ,ND

 𝑦𝑦  
 +  

𝐾AB ,ND
 𝑥𝑦 

𝐶AB ,ND
 𝑦𝑥  

+𝐾AB ,ND
 𝑦𝑥  

𝐶AB ,ND
 𝑥𝑦 

  

𝐸

 
 

 

𝐶B,ND =
𝜍

2
 𝐶AB ,ND

 𝑥𝑥 
+ 𝐶AB ,ND

 𝑦𝑦  
 − 𝐸 

Among the four roots of E in Eq. (6), the positive 

real root is used in the calculation since 𝐾B,ND  and 

𝐶B,ND  are real and positive. 𝜈 in 𝜍 is varied over 1   

 max. 𝜅 is computed using Eq. (5) for each 𝜈. If the 

computed 𝜅 at any 𝜈 satisfies Eq. (4) then 𝜈 = 𝜈DSB . 

𝑚R,C  is computed using 𝜈DSB =  𝐾B 𝑚R,C  
1

2 
. 

 

3 Results and Discussion 
 

3.1 Static and dynamic characteristics of RABDFS and 

RARBS  
 

3.1.1 Static characteristics 

The steady-state simulation (SSS) in a two-degrees-

of-freedom approach
25

 provides the following:  

(a) coordinates of the static equilibrium position 

identified at t = 0, i.e.,  𝑋J 0 , 𝑌J 0   of CGJ, and 

 𝑋B 0 , 𝑌B 0   of CGB which can be defined in terms 

of e and α as  𝑒J
0 , 𝛼J

0  and  𝑒B
0 , 𝛼B

0 , respectively  

(Fig. 1); and similarly (b) components of static load-

carrying capacity  𝐹J
 𝑥  0 , 𝐹J

 𝑦  0   and 

 𝐹B
 𝑥  0 , 𝐹B

 𝑦  0  . Figures 9 & 10 show the static 

characteristics of ABDFS and ARB respectively at  

ω (rad s
-1

) = 680.7, 1309, 1937.3, 2565.6, and  

3193.9. ω is chosen at equal intervals of 628.3 rad s
-1

 

on both sides of ωmax = 2565.6 rad s
-1

 that corresponds 

to Smax = 24500 RPM (see Table 1). 

With an increase in ω, it is observed that a static 

equilibrium position is attained with a  decrease in 𝑒J
0  

for both ABDFS and ARB. With an increase in ω, 𝑒B
0 
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remains constant for ARB. Under purely 

hydrodynamic lubrication and incompressible flow 

conditions, e decreases from c to zero as ω increases 

from zero to infinity (with constant 𝛼J
0 = 𝜋 2 ).

29
 

However, from Figs 9 & 10, it is seen that the 

variations of 𝑒J
0 and 𝛼J

0
 over the given range of ω for 

ABDFS and ARB are smaller. These results suggest 

that the role of hydrodynamic lubrication may be 

smaller and the ABDFS and the ARB operate mainly 

under a hydrostatic lubrication mechanism due to the 

supply of externally-pressurized air. However, it is 

observed that the variations of 𝑒J
0 over the given range 

of ω for ABDFS are greater than the corresponding 

variations of 𝑒J
0 for ARB (see Figs 9 & 10). These 

results suggest that the role of hydrostatic lubrication 

in the ABDFS is smaller in comparison with the 

ARB. The presence of AR with the chamber feeding 

system in the ARB characterizes its greater level of 

hydrostatic lubrication. It is also inferred that both the 

ABDFS and the ARB show a smaller 𝛼J
0 than a 

bearing operated with incompressible lubricants.
29

 

 
3.1.2 Dynamic coefficients 

Figures 11 & 12 show the DC of ABDFS and Figs 

13–16 show the DC of ARB at ω (rad s
-1

) = 680.7, 

1309, 1937.3, 2565.6, and 3193.9,  (rad s
-1

) = 340.3, 

654.5, 968.7, 1282.8, and 1597. ω is chosen at equal 

intervals of 628.3 rad s
-1

 on both sides of ωmax = 

 
 

Fig. 10 — Static characteristics of ARB (Static equilibrium 

positions of the journal (J) and the bushing (B) in terms of 

eccentricity (e) and attitude angle (α) as  𝑒J
0, 𝛼J

0  and  𝑒B
0, 𝛼B

0  

arrived at various angular velocities of the journal, ω.  ω is chosen 

at equal intervals of 628.3 rad s-1 on both sides of ωmax = 2565.6 

rad s-1 which corresponds to the maximum rotational speed of the 

rotor, Smax = 24500 RPM. Static equilibrium positions are attained 

with almost a constant 𝑒J
0, a constant 𝑒B

0, and an increase in 𝛼J
0 

and 𝛼B
0  as ω is increased. Smaller range of variation of 𝑒J

0, 𝑒B
0, 𝛼J

0, 

and 𝛼B
0  suggest that ARB operates mainly under a hydrostatic 

lubrication mechanism). 

 
 

Fig. 9 — Static characteristics of ABDFS (Static equilibrium 

positions of the journal in terms of eccentricity (e) and attitude angle 

(α) as  𝑒J
0, 𝛼J

0  arrived at various angular velocities of the journal, ω.  

ω is chosen at equal intervals of 628.3 rad s-1 on both sides of ωmax = 

2565.6 rad s-1 which corresponds to the maximum rotational speed of 

the rotor, Smax = 24500 RPM. Static equilibrium positions are attained 

with a decrease in 𝑒J
0 and an increase in 𝛼J

0 as ω is increased. Smaller 

range of variation of 𝑒J
0 and 𝛼J

0 suggest that ABDFS operates mainly 

under a hydrostatic lubrication mechanism). 

 
 

Fig. 11 — (a) Direct and (b) cross-coupled stiffness coefficients of ABDFS (𝐾AB
 𝑦𝑥  

 is 10-times smaller than 𝐾AB
 𝑥𝑥 

, implying that harmful 

hydrodynamic instability conditions are reduced in RABDFS.  The stronger dependence of 𝐾AB
 𝑥𝑥 

 on  shows that the squeeze film lubrication 

mechanism is more predominant. When  increases from 340.3 rad s-1 to 1282.8 rad s-1, the air compressibility softens the ABDFS. When  

increases further from 1282.8 rad s-1 to 1597 rad s-1, the air compressibility stiffens or hardens the ABDFS. Thus, there is a decrease of 𝐾AB
 𝑥𝑥 

 

when  increases from 340.3 rad s-1 to 1282.8 rad s-1 and an increase of 𝐾AB
 𝑥𝑥 

 when  increases from 1282.8 rad s-1 to 1597 rad s-1. The 

increasing contribution of the hydrodynamic lubrication mechanism with increasing ω results in an increase of 𝐾AB
 𝑦𝑥  

). 
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2565.6 rad s
-1

 that corresponds to Smax = 24500 RPM 

(Table 1). Since the problem considered here 

investigates self-excited vibration or half-frequency 

whirl,  =ω/2 in Figs 11–16. 

The following inferences are made from simulation 

results for ABDFS and ARB shown in Figs 11–16:  

a. 𝐾AB
 𝑦𝑥  

 is 10-times smaller than 𝐾AB
 𝑥𝑥 

 and 

𝐶AB
 𝑦𝑥  

 is 13-times smaller than 𝐶AB
 𝑥𝑥 

 in ABDFS (see 

Figs 11 & 12). 𝐾AB
 𝑦𝑥  

 is 24-times smaller than  𝐾AB
 𝑥𝑥 

 

and 𝐶AB
 𝑦𝑥  

 is 16-times smaller than 𝐶AB
 𝑥𝑥 

 in ARB  

(Figs 13 & 14). 𝐾AR
 𝑦𝑥  

 is 86-times smaller than 𝐾AR
 𝑥𝑥 

 

and 𝐶AR
 𝑦𝑥  

 is 46-times smaller than 𝐶AR
 𝑥𝑥 

 in ARB  

(Figs 15 & 16). Smaller cross-coupled coefficients 

imply that harmful hydrodynamic instability 

conditions are reduced in both RABDFS and RARBS. 

b. 𝐾AB
 𝑥𝑥 

 and 𝐶AB
 𝑥𝑥 

 of ABDFS are stronger 

functions of  when compared to their variations with 

ω (see Figs 11(a) & 12(a)). 𝐾AB
 𝑥𝑥 

, 𝐶AB
 𝑥𝑥 

, 𝐾AR
 𝑥𝑥 

, and 

𝐶AR
 𝑥𝑥 

 of ARB are also stronger functions of   

(Figs 13(a), 14(a), 15(a), & 16(a)). The stronger 

dependence of these DC on  shows that the squeeze 

film lubrication mechanism is more predominant in 

both ABDFS and ARB. As ω increases, 𝐾AB
 𝑦𝑥  

 

increases and 𝐶AB
 𝑦𝑥  

 decreases (Figs 11(b), 12(b), 

13(b), & 14(b)). These variations of 𝐾AB
 𝑦𝑥  

 and 𝐶AB
 𝑦𝑥  

 

are attributed to the increasing contribution of 

hydrodynamic lubrication mechanism with increasing 

ω in both ABDFS and ARB. 

c. The incorporation of AR in ARB results in 

higher values of the direct DC of AB when compared 

with the direct DC of AB in ABDFS.
22

 𝐶AB
 𝑥𝑥 

< 0 for 

both the types (Figs 12(a) and 14(a)). These facts are 

verified in this investigation where (a) the average of 

direct stiffness coefficients of AB in ARB is 43.07% 

larger than that of AB in ABDFS, (b) the direct 

damping coefficients of AB in ARB are 21.97% larger 

than that of AB in ABDFS. 

 
 

Fig. 12 — (a) Direct and (b) cross-coupled damping coefficients of ABDFS (𝐶AB
 𝑦𝑥  

 is 13-times smaller than 𝐶AB
 𝑥𝑥 

, implying that harmful 

hydrodynamic instability conditions are reduced in RABDFS.  𝐶AB
 𝑥𝑥 

< 0. The stronger dependence of 𝐶AB
 𝑥𝑥 

 on  shows that the squeeze 

film lubrication mechanism is more predominant. When  increases, the air compressibility makes 𝐶AB
 𝑥𝑥 

 to decrease towards zero. The 

trend indicates that 𝐶AB
 𝑥𝑥 

→ 0 as   ). 

 

 
 

Fig. 13 — (a) Direct and (b) cross-coupled stiffness coefficients of AB in ARB (𝐾AB
 𝑦𝑥  

 is 24-times smaller than  𝐾AB
 𝑥𝑥 

, implying that 

harmful hydrodynamic instability conditions are reduced in RARBS. The stronger dependence of 𝐾AB
 𝑥𝑥 

 on  shows that the squeeze film 

lubrication mechanism is more predominant. When  increases, the air compressibility softens the AB of ARB. Thus, there is a decrease 

of 𝐾AB
 𝑥𝑥 

 when  increases. The increasing contribution of the hydrodynamic lubrication mechanism with increasing ω results in an 

increase of 𝐾AB
 𝑦𝑥  

). 
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d. The direct DC of AB in ABDFS and the direct 

DC of AB and AR in ARB are affected by the fluid 

compressibility effects.
30

 When  increases from 

340.3 rad s
-1

 to 1282.8 rad s
-1

, the air compressibility 

softens the AB of ABDFS. When  increases further 

from 1282.8 rad s
-1

 to 1597 rad s
-1

, the air 

compressibility stiffens or hardens the AB of ABDFS. 

Thus, there is a decrease of 𝐾AB
 𝑥𝑥 

 when  increases 

from 340.3 rad s
-1

 to 1282.8 rad s
-1 

and an increase of 

𝐾AB
 𝑥𝑥 

 when  increases from 1282.8 rad s
-1

 to 1597 

rad s
-1 

in ABDFS (Fig. 11(a)). When  increases, the 

air compressibility softens the AB and hardens the AR 

of ARB. When  increases, it results in a decrease of 

𝐾AB
 𝑥𝑥 

 (Fig. 13(a)) and an increase of 𝐾AR
 𝑥𝑥 

 for ARB 

(Fig. 15(a)). When  increases, the air compressibility 

makes 𝐶AB
 𝑥𝑥 

 of both ABDFS and ARB (Figs 12(a) & 

14(a)) and 𝐶AR
 𝑥𝑥 

 of ARB (Fig. 16(a)) to decrease 

towards zero. The trend indicates that 𝐶AB
 𝑥𝑥 

→ 0 for 

both ABDFS and ARB, and 𝐶AR
 𝑥𝑥 

→ 0 for ARB,  

as   . 

3.1.3 Comparisons of dynamic stability of RABDFS and RARBS 

The DC of ABDFS are determined at all sets of  

5 selected values of ω (rad s
-1
) = 680.7, 1309,  

1937.3, 2565.6, and 3193.9 and 5 selected values of  

(rad s
-1
) = 340.3, 654.5, 968.7, 1282.8, and 1597, in the 

operating range, using the two-degrees-of-freedom 

solution procedure
25

 (Figs 11 & 12). ω is chosen at equal 

intervals of 628.3 rad s
-1
 on both sides of  

ωmax = 2565.6 rad s
-1
 that corresponds to Smax = 24500 

RPM (see Table 1). Since the problem considered here 

investigates self-excited vibration or half-frequency 

whirl,  = ω/2. The DC of ABDFS at any ω and  in its 

operating range are estimated, by following the 

procedure given by Czołczyński
 22

 and Muthanandam
28

, 

using these 5  5 sets of DC. Due to the comparatively 

small journal eccentricity ϵ (e = 1 m), the  

calculated values of DC of ABDFS using the two-

degrees-of-freedom solution procedure presented by 

Muthanandam & Thyageswaran
25

 fulfill the following 

relations:𝐾AB
 𝑦𝑦  

≈ 𝐾AB
 𝑥𝑥 

, 𝐾AB
 𝑥𝑦  

≈ −𝐾AB
 𝑦𝑥  

,  𝐶AB
 𝑦𝑦  

≈

𝐶AB
 𝑥𝑥 

, 𝐶AB
 𝑥𝑦  

≈ −𝐶AB
 𝑦𝑥  

. These relations are used in 

solving equations of free-vibrations of the RABDFS. 

 
 

Fig. 14 — (a) Direct and (b) cross-coupled damping coefficients of AB in ARB (𝐶AB
 𝑦𝑥  

 is 16-times smaller than 𝐶AB
 𝑥𝑥 

, implying that 

harmful hydrodynamic instability conditions are reduced in RARBS. 𝐶AB
 𝑥𝑥 

< 0. The stronger dependence of 𝐶AB
 𝑥𝑥 

 on  shows that the 

squeeze film lubrication mechanism is more predominant. When  increases, the air compressibility makes 𝐶AB
 𝑥𝑥 

 to decrease towards 

zero. The trend indicates that 𝐶AB
 𝑥𝑥 

→ 0 as   ). 

 

 
 

Fig. 15 — (a) Direct and (b) cross-coupled stiffness coefficients of AR in ARB (When  increases, the air compressibility hardens the AR 

of ARB. Thus, there is an increase of 𝐾AR
 𝑥𝑥 

 when  increases. Since the bushing does not rotate, there is an absence of the hydrodynamic 

lubrication mechanism in AR. Thus, with increasing ω, 𝐾AR
 𝑦𝑥  

 remains constant). 
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Since the bushing of an ABDFS is rigidly mounted 

with the casing (Fig. 4) and for all sets of (ω, ), 

𝐶AB
 𝑥𝑥 

< 0 (Fig. 12(a)), the RABDFS is unstable over 

the entire operating ω range with ωmax = 2565.6 rad s
-1
. 

This behavior is verified by solving equations of 

motion in cylindrical vibration mode and by  

solving equations of motion in conical vibration 
mode. 

Figures 17(a) & 17(b) show the eigenvalues  

(j = j + ij,  j = 1, 3) of the RABDFS in cylindrical 

vibration mode. Figures 18(a) & 18(b) show the 

eigenvalues (j = j + ij,  j = 1, 3) of the RABDFS in 

conical vibration mode. In Figs 17 & 18, the 

eigenvalues are shown in the range of 680.7 ≤ ω  

(rad s
-1

) ≤ 2565.6 and  (rad s
-1

) = 340.3, 654.5, 968.7, 
and 1282.8. 

Since the RABDFS has two degrees of freedom, xR 

and yR (in cylindrical vibration mode), and 𝛹R  and 𝛷R  

(in conical vibration mode), there are four eigenvalues 

j = j + ij (1 ≤ j ≤ 4) obtained by solving equations 

of motion for each mode of vibration. Every two 

eigenvalues which correspond to a given degree of 

freedom, are complex conjugates of each other. i.e., 

1 and 3 are complex conjugates of 2 and 4 

respectively. Hence, a presentation of eigenvalues 2 

and 4 has been avoided. The real part j of j 

determines the rate of damping. In Figs 17(a) & 18(a), 

it is noted that the real part of the eigenvalue j > 0. 

This implies that the vibration amplitude increases 

with time, thus predicting the unstable behavior of the 

RABDFS at any ω. 

When ES (having the DC, 

𝐾ES
 𝑥𝑥 

, 𝐾ES
 𝑦𝑦  

, 𝐾ES
 𝑦𝑥  

, 𝐾ES
 𝑥𝑦 

, 𝐶ES
 𝑥𝑥 

, 𝐶ES
 𝑦𝑦  

, 𝐶ES
 𝑦𝑥  

, and 𝐶ES
 𝑥𝑦 

) is 

introduced between the bushing and the casing, a 

condition of C
(ij) 

> 0 can be achieved.
22

  

The ES in the RABDFS is capable of preventing self-

excited vibration. 

Due to the comparatively small journal eccentricity 

ϵ (e = 1 m), the calculated values of DC of ABDFS 

with ES fulfill the following relations: 𝐾ES
 𝑦𝑦  

≈

𝐾ES
 𝑥𝑥 

, 𝐾ES
 𝑥𝑦 

≈ 𝐾ES
 𝑦𝑥  

, 𝐶ES
 𝑦𝑦  

≈ 𝐶ES
 𝑥𝑥  

, 𝐶ES
 𝑥𝑦  

≈ 𝐶ES
 𝑦𝑥  

. 

These relations are used in solving equations of free 

vibrations where the DC of AR is replaced with  

the DC of ES. Maps of DC are arrived at by  

solving these equations with ωmax = 2565.6 rad s
-1

 and 

max = ωmax/2. It is found that the effect of  

cross-coupled DC on the dynamic stability of the 

RABDFS is negligible when compared with the effect 

of direct DC. Hence, the maps of direct DC of  

ES only are presented.  

 
 

Fig. 16 — (a) Direct and (b) cross-coupled damping coefficients of AR in ARB (𝐶AR
 𝑥𝑥 

> 0. When  increases, the air compressibility 

makes 𝐶AR
 𝑥𝑥 

 to decrease towards zero. The trend indicates that 𝐶AR
 𝑥𝑥 

→ 0 as   . Since the bushing does not rotate, there is an absence 

of the hydrodynamic lubrication mechanism in AR. Thus, with increasing ω, 𝐶AR
 𝑦𝑥  

 remains constant). 

 

 
 

Fig. 17 — (a) Real part, (b) Imaginary part of eigenvalues j = j + ij of RABDFS in cylindrical vibrations (1 = 340.3 rad s-1, 2 = 654.5 

rad s-1, 3 = 968.7 rad s-1, and 4 = 1282.8 rad s-1). 
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Since the DC of AB only are known at all ω and  

 in the range of 1  ω (rad s
-1

)  2565.6 and 1   

(rad s
-1

)  1282.8, type 1 dynamic stability maps  

(Figs 19 & 20) are arrived at by following the 

calculation procedure given in the section 2.1.5. The 

dynamically stable region is distinguished from the 

dynamically unstable region using the dynamic 

stability boundaries (DSB) in Figs 19 & 20. The 

solutions of equations of motion in cylindrical 

vibration mode result in the DSB in cylindrical 

vibration mode (DSB-Cyl). By solving equations of 

motion in conical vibration mode, the DSB in conical 

vibration mode (DSB-Con) is arrived at.  

There are two distinct stability boundaries in Figs 

19(a) & 19(b). In Fig. 19(a), LDSB-Cyl and UDSB-

Cyl dictate the stable lower operating ω limit and the 

stable upper operating ω limit, for a given 

DC  𝐾ES
 𝑥𝑥 

, 𝐶ES
 𝑥𝑥 

  of ES for the bushing, during the 

cylindrical vibration mode. In Fig. 19(b), LDSB-Con 

and UDSB-Con dictate the stable lower operating ω 

limit and the stable upper operating ω limit, for a 

given DC   𝐾ES
 𝑥𝑥 

, 𝐶ES
 𝑥𝑥 

  of ES for the bushing, 

during the conical vibration mode. 

For any given 𝐾ES
 𝑥𝑥 

, there are limits of 𝐶ES
 𝑥𝑥  

 in 

between which the RABDFS is stable over the entire 

operating ω range with ωmax = 2565.6 rad s
-1

. When 

𝐶ES
 𝑥𝑥 

 is either decreased or increased beyond these 

limits, the stable operating range of ω is reduced, for 

any given 𝐾ES
 𝑥𝑥 

. The stable region can be reached 

only by passing through a region of instability. Figure 

20 dictates the range of 𝐾ES
 𝑥𝑥 

 and 𝐶ES
 𝑥𝑥 

 for which the 

RABDFS is dynamically stable over the entire 

operating ω range with ωmax = 2565.6 rad s
-1

, for the 

calculated DC, 𝐾AB
 𝑥𝑥 

, 𝐾AB
 𝑦𝑥  

, 𝐶AB
 𝑥𝑥 

, and 𝐶AB
 𝑦𝑥  

. For a 

 
 

Fig. 18 — (a) Real part, (b) Imaginary part of eigenvalues j = j + ij of RABDFS in conical vibrations (1 = 340.3 rad s-1,  

2 = 654.5 rad s-1, 3 = 968.7 rad s-1, and 4 = 1282.8 rad s-1). 

 

 
 

Fig. 19 — Type 1 dynamic stability maps of RABDFS. (a) Cylindrical vibrations. (b) Conical vibrations (Dynamic stability boundaries 

(DSB) distinguish the dynamically stable region from the dynamically unstable region. For a given DC of ES for the bushing, LDSB and 

UDSB dictate the stable lower operating ω limit and the stable upper operating ω limit, respectively). 

 
 

Fig. 20 — Type 1 dynamic stability maps of RABDFS (Dynamic 

stability boundaries (DSB) distinguish the dynamically stable 

region from the dynamically unstable region. DSB-Cyl and DSB-

Con dictate the range of DC of ES for stable operation of 

RABDFS during cylindrical vibration mode and conical vibration 

mode, respectively). 
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given RABDFS to be dynamically stable, the DC of 

ES should lie within their respective stable regions for 

both vibration modes. Thus, the dynamic stability of a 

given RABDFS (when an ES is introduced between 

the bushing and the casing) is verified using the 

stability maps. 

Figure 21 shows type 2 dynamic stability maps of 

RARBS (Table 1) in both cylindrical vibration mode 

and conical vibration mode. Figure 22 shows the 

variation of rotor critical mass (mR,C) with ωDSB, and 

Fig. 23 shows the variation of whirl frequency (DSB) 

with ωDSB of RARBS in cylindrical vibration mode.  

The DC of ARB are determined at all sets of 5 

selected values of ω (rad s
-1

) = 680.7, 1309, 1937.3, 

2565.6, and 3193.9 and 5 selected values of  (rad s
-1

) 

= 340.3, 654.5, 968.7, 1282.8, and 1597, in the 

operating range, using the two-degrees-of-freedom 

solution procedure
25

 (see Figs 13–16). The DC of 

ARB at any ω and  in its operating range are 

estimated, by following the procedure given by 

Czołczyński
 22

 and Muthanandam
28

, using these 5  5 

sets of DC. Due to the comparatively small journal 

eccentricity ϵ (e = 1 m), the calculated values of DC 

for ARB using the two-degrees-of-freedom solution 

procedure presented by Muthanandam & 

Thyageswaran
25

 fulfill the following relations: 

𝐾AB
 𝑦𝑦  

≈ 𝐾AB
 𝑥𝑥 

, 𝐾AB
 𝑥𝑦  

≈ −𝐾AB
 𝑦𝑥  

, 𝐶AB
 𝑦𝑦  

≈

𝐶AB
 𝑥𝑥 

, 𝐶AB
 𝑥𝑦  

≈ −𝐶AB
 𝑦𝑥  

, 𝐾AR
 𝑦𝑦  

≈ 𝐾AR
 𝑥𝑥 

, 𝐾AR
 𝑥𝑦  

≈

𝐾AR
 𝑦𝑥  

, 𝐶AR
 𝑦𝑦  

≈ 𝐶AR
 𝑥𝑥 

, 𝐶AR
 𝑥𝑦  

≈ 𝐶AR
 𝑦𝑥  

. These relations 

are used in solving equations of free-vibrations of the 

RARBS.  

Since the DC of AB and AR are known at all ω and 

 in the range of 1  ω (rad s
-1

)  2565.6 and 1   

(rad s
-1

)  1282.8, type 2 dynamic stability maps (Fig. 

21) are arrived at by following the calculation 

procedure given in the section of 2.1.5, i.e., maps of ω 

and  are arrived at by solving equations of motion. 

The dynamically stable region is distinguished from 

the dynamically unstable region using the dynamic 

stability boundaries (DSB) in Fig. 21. The solutions 

of equations of motion in cylindrical vibration mode 

result in the DSB in cylindrical vibration mode (DSB-

Cyl). By solving equations of motion in conical 

vibration mode, the DSB in conical vibration mode 

(DSB-Con) is arrived at.  

There are two distinct stability boundaries for 

RARBS in Figs 21 & 22. In Figs. 21 and 22, LDSB-

Cyl and UDSB-Cyl dictate the stability threshold 

lower operating  limit (LDSB) and the stability 

threshold upper operating  limit (UDSB), for a given 

ω, during the cylindrical vibration mode in RARBS 

and RABDFS. The stable region can be reached only 

by passing through a region of instability. Stability 

threshold lower operating  limit is not found  

in RABDFS. Since RARBS consists of an  

additional bushing mass, mJB, there is an additional 

stability threshold.
3
 In Fig. 21, LDSB-Con and 

UDSB-Con dictate LDSB and UDSB, for a given ω, 

during the conical vibration mode in RARBS. Figure 

21 dictates the range of ω and , for which the 

RARBS is dynamically stable, for the calculated DC, 

𝐾AB
 𝑥𝑥 

,  𝐾AB
 𝑦𝑥  

,  𝐶AB
 𝑥𝑥  

,  𝐶AB
 𝑦𝑥  

,  𝐾AR
 𝑥𝑥 

,  𝐾AR
 𝑦𝑥  

, 𝐶AR
 𝑥𝑥  

, and 

 
 

Fig. 21 — Type 2 dynamic stability maps of RARBS (Dynamic 

stability boundaries (DSB) distinguish the dynamically stable 

region from the dynamically unstable region. For a given ω, 

LDSB and UDSB dictate the stable lower operating  limit and 

the stable upper operating  limit, respectively. DSB-Cyl and 

DSB-Con are found by substituting the DC of AB 

(𝐾AB
 𝑥𝑥 

, 𝐾AB
 𝑦𝑥  

, 𝐶AB
 𝑥𝑥 

, and 𝐶AB
 𝑦𝑥  

) and the DC of AR (𝐾AR
 𝑥𝑥 

, 𝐾AR
 𝑦𝑥  

, 

𝐶AR
 𝑥𝑥 

, and 𝐶AR
 𝑦𝑥  

) in equations of cylindrical vibrations and 

equations of conical vibrations, respectively. These DC of AB and 

AR are functions of ω and). 

 

 
 

Fig. 22 — Rotor critical mass and stability threshold speeds of 

RARBS and RABDFS in cylindrical vibrations (At ω = 680.7 rad 

s-1, RABDFS is stable if mR  256.99 kg, 𝐶AB
 𝑥𝑥 

> 0, and 𝐶AB
 𝑦𝑦  

>

0. At ω = 680.7 rad s-1, RARBS is stable either if mR  1181.43 kg 

or if mR  32.05 kg. Since RARBS has mR = 3.4 kg, its ωDSB = 

1002.7 rad s-1. For a given ω = 680.7 rad s-1, mR,C is lower for 
RARBS when compared with RABDFS).  
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𝐶AR
 𝑦𝑥  

. For the given RARBS to be dynamically stable, 

ω and  should lie within their respective stable 

regions in Fig. 21, for both vibration modes.  

Figure 22 shows the maximum speed (ωDSB) that 

can be achieved for a given rotor mass (mR,C). If this 

speed is exceeded then the self-excited vibration 

occurs and the rotor system becomes unstable. On the 

other hand, Fig. 22 dictates the range of mR for which 

the rotor system is stable. For the RABDFS and the 

RARBS to be dynamically stable during cylindrical 

vibrations, mR of these two systems should lie within 

their respective stable regions in Fig. 22. In Fig. 22, 

mR,C = 256.99 kg corresponds to νUDSB-Cyl = 192.47 rad 

s
-1

 (see Fig. 23) at ωDSB = 680.7 rad s
-1

 for RABDFS. 

For the RABDFS to be stable, mR  256.99 kg, 

provided 𝐶AB
 𝑥𝑥 

> 0 and 𝐶AB
 𝑦𝑦  

> 0. In Fig. 22,  

mR,C = 1181.43 kg corresponds to LDSB-Cyl = 104.2 rad 

s
-1

 (Fig. 21) and mR,C = 32.05 kg corresponds to  

UDSB-Cyl = 642.56 rad s
-1

 (Fig. 21) at ωDSB = 680.7 rad 

s
-1

 for RARBS. For a given ωDSB = 680.7 rad s
-1

,  

mR,C is lower for RARBS when compared with 

RABDFS. For the RARBS to be stable, either  

mR  1181.43 kg or mR  32.05 kg. Since RARBS has 

mR = 3.4 kg, its ωDSB = 1002.7 rad s
-1

, as explained 

below.  

The two extreme conditions of LDSB-Cyl and UDSB-Cyl 

in RARBS correspond to two different whirl frequency 

ratios 𝜍min = 0.1531 and 𝜍max = 0.944. In the first case, 

the journal executes 108 revolutions while the CGJ 

completes only 17 revolutions in one second. Since the 

CGJ orbits at a rate that is much slower than the journal 

rotation rate, the orbital motion of CGJ does not make 

any significant change in the pressure distribution in 

the RARBS. During this whirl condition, the CGJ 

occupies successive static equilibrium positions 

 𝑒J
0 , 𝛼J

0  and the self-excited whirl develops.  

In the second case, the journal executes 108 

revolutions while the CGJ completes only 102 

revolutions in one second. Since the CGJ orbits at a 

rate that is nearer to and slightly lesser than the 

journal rotation rate, the orbital motion of CGJ 

makes significant changes in the pressure 

distribution that effectively damps the motion of 

the RARBS. 

Thus, it is inferred from Fig. 23 that a self-excited 

whirl develops when   ω/2. From Fig. 23,  

for RARBS, ωDSB = 1002.7 rad s
-1

 corresponds to DSB 

= 598.89 rad s
-1

. 𝜍 = 0.5973 at this condition. Since  

𝜍  0.5 in 1  ω (rad s
-1

)  1002.7, RARBS is stable 

up to ω = 1002.7 rad s
-1

. However, the stable region 

can be reached only by passing through a region of 

instability as shown in Fig. 21. Since 𝜍 < 0.5 in  

1309  ω (rad s
-1

)  3193.9, RARBS is unstable from 

ω = 1309 rad s
-1

 to 3193.9 rad s
-1

. 

In Figs 22 & 23, for RABDFS, ωDSB = 314.2 rad s
-1

 

which corresponds to DSB = 363.8 rad s
-1

 and  

mR,C = 77.2 kg. 𝜍 = 1.1579 at this condition. Since 𝜍  

0.5 in 1  ω (rad s
-1

)  314.2, RABDFS will be stable 

up to ω = 314.2 rad s
-1

, provided mR,C = 77.2 kg, 

𝐶AB
 𝑥𝑥 

> 0 and 𝐶AB
 𝑦𝑦  

> 0. Since 𝜍 < 0.5 in 680.7  ω 

(rad s
-1

)  3193.9, RABDFS with mR,C = 77.2 kg, 

𝐶AB
 𝑥𝑥 

> 0 and 𝐶AB
 𝑦𝑦  

> 0 will be unstable from ω = 

680.7 rad s
-1

 to 3193.9 rad s
-1

. Since mR = 3.4 kg  

(Table 1) and 𝐶AB
 𝑥𝑥 

< 0 (Fig. 12(a)), the RABDFS is 

unstable over the entire operating ω range with  

ωmax = 2565.6 rad s
-1

 (which corresponds to the 

maximum rotor speed, Smax). 

Incorporation of AR in RARBS results in a larger 

ωDSB (Fig. 23) and a smaller mR,C (Fig. 22) when 

compared with RABDFS. Thus, it is verified using 

the stability maps that the AR element of the ARB is 

capable of preventing self-excited vibration in lightly 

loaded rotor-bearing systems.  
 

4 Conclusion 

To ascertain the need for an air-ring (AR) in an  

air-bearing (AB), a comparative study of the 

dynamic stability of the rotor supported by  

the following types of air-bearings is carried out: 

(a) air-bearing with a direct feeding system 

 
 

Fig. 23 — Whirl frequency and stability threshold speeds of 

RARBS and RABDFS in cylindrical vibrations (For RABDFS, 

ωDSB = 314.2 rad s-1 which corresponds to DSB = 363.8 rad s-1 and 

mR,C = 77.2 kg. Since mR = 3.4 kg (Table 1) and 𝐶AB
 𝑥𝑥 

< 0  

(Fig. 12(a)), the RABDFS is unstable over the entire operating ω 

range. For RARBS, ωDSB = 1002.7 rad s-1 corresponds to DSB = 

598.89 rad s-1. 𝜍 = 0.5973 at this condition. Since 𝜍  0.5 in 1  ω 

(rad s-1)  1002.7, RARBS is stable up to ω = 1002.7 rad s-1). 
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(ABDFS) and (b) air-ring bearing (ARB). In the 

ABDFS, (i) there is no AR and the bushing is 

rigidly fixed to the casing and (ii) there is no air 

chamber and the air is fed into AB directly through 

the orifice.  

The following inferences are made from the steady-

state simulation and the transient-state simulation at [ω 

(rad s
-1

),  (rad s
-1

)] = (680.7, 340.3), (1309, 654.5), 

(1937.3, 968.7), (2565.6, 1282.8), and (3193.9, 1597)] 

for ABDFS and ARB: Both the ABDFS and the ARB 

operate mainly under a hydrostatic lubrication 

mechanism due to the supply of externally-pressurized 

air. However, the presence of AR with the chamber 

feeding system in the ARB characterizes its greater 

level of hydrostatic lubrication. The stronger 

dependence of the direct DC on  shows that the 

squeeze film lubrication mechanism is more 

predominant in both the ABDFS and the ARB. The 

average of direct stiffness coefficients of AB in ARB is 

43.07% larger than that of AB in ABDFS and the 

average of direct damping coefficients of AB in ARB 

is 21.97% larger than that of AB in ABDFS. 

Incorporation of AR in ARB results in higher values of 

the direct DC of AB when compared with the direct 

DC of AB in ABDFS. The direct DC of AB in ABDFS 

and the direct DC of AB and AR in ARB are affected 

by  due to the fluid compressibility effects. When  

increases from 340.3 rad s
-1

 to 1282.8 rad s
-1

, the air 

compressibility softens the AB of ABDFS. A further 

increase in   from 1282.8 rad s
-1

 to 1597 rad s
-1
 

stiffens or hardens the AB of ABDFS. Thus, there is a 

decrease of direct stiffness coefficients of AB when  

increases from 340.3 rad s
-1

 to 1282.8 rad s
-1
 and an 

increase of direct stiffness coefficients of AB when  

increases from 1282.8 rad s
-1

 to 1597 rad s
-1

 in ABDFS. 

When  increases, the air compressibility softens the 

AB and hardens the AR of ARB. When  increases, it 

results in a decrease of direct stiffness coefficients of 

AB and an increase of direct stiffness coefficients of 

AR for ARB. When  increases, the direct damping 

coefficients of AB of ABDFS and the direct damping 

coefficients of AB and AR of ARB decrease towards 

zero. 

The dynamic stability is verified using the dynamic 

stability maps of dynamic coefficients (DC) of air-

bearings. These maps are arrived at by solving 

equations of free-vibration of the rotor AB systems 

using the DC determined by the two degrees of 

freedom approach. It is found that the effect of cross-

coupled DC on dynamic stability is negligible when 

compared with the effect of direct DC. The complete 

dynamic stability analyses of these two rotor AB 

systems require the determination of DC at all angular 

velocities of journal ω and journal vibration 

frequencies in the operating range. The results of 

comparative studies on the dynamic stability of 

ABDFS and ARB are as follows.  

Since the bushing of an ABDFS is rigidly mounted 

with the casing, the rotor air-bearing with a direct 

feeding system is unstable over the entire operating ω 

range. The dynamic stability of the rotor AB system is 

improved with ARB where the AR acts as flexible, 

damped support. The rotor air-ring bearing system is 

dynamically stable up to ω = 1002.7 rad s
-1

. The rotor 

critical mass of ARB is smaller than that of ABDFS. 

Thus, the AR element of the ARB is capable of 

preventing self-excited vibration in lightly loaded 

rotor-bearing systems. 

At the design stage of ARB, the nominal levels of 

the ARB parameters such as the mass of the rotor, the 

mass of the joint-bushing, the diameter of the journal, 

length of the journal, clearance of air-bearing, 

clearance of air-ring, air supply pressure, feed-hole 

orifice diameter, feed-hole chamber diameter, and 

feed-hole chamber depth, and the deviations from 

their nominal levels are proposed to be selected based 

on a computer-aided parameter design. The stiffness 

coefficients and damping coefficients of ARB 

calculated using the two-degrees of freedom approach 

presented in this paper are proposed to be validated by 

the values calculated using the measured 

displacements, and force components during the 

experimentation on ARB. The stability threshold 

speed of rotation of the journal and the stability map 

arrived at by numerical simulation on ARB presented 

in this paper are proposed to be validated by the 

stability map arrived at by experimentation on ARB.  
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