Open Access Open Access  Restricted Access Subscription Access

Cu-Cu thermo compression wafer bonding techniques for micro-system integration


Affiliations
1 Central Manufacturing Technology Institute, Bengaluru, Karnataka 560 022, India
2 Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641 114, India

Copper (Cu) is used as an interconnect material in many applications owing to its high thermal, electrical conductivity and excellent electromigration resistance. Though this material has many advantages, the main drawback is that it gets oxidized on exposure to air. Thermo-compression bonding is a wafer bonding technique that uses metal layers for heaping wafers, which aids in attaining outstanding electrical conductivity without weakening the mechanical properties. The adsorbed oxide layer hurdles the proper bonding to happen between the wafers. In order to enhance the diffusion between the metal layers, the copper oxide layer should be removed which necessitates the requirement of high temperature, pressure, long bonding time and the inert gas atmosphere throughout the Cu-Cu thermo compression wafer bonding process. Simultaneous application of high temperature and pressure for a long time leads to the deterioration of the underlying sensitive components. This paper aims to present several techniques such as surface treatment, chemical pretreatment, surface passivation, crystal orientation modification, stress gradient in the thin film and formic acid vapour treatment which are used in order to avoid the deterioration of underlying sensitive devices and to obtain a proper bonding between the wafers at low temperature and pressure.
User
Notifications
Font Size

Abstract Views: 98




  • Cu-Cu thermo compression wafer bonding techniques for micro-system integration

Abstract Views: 98  | 

Authors

Megha Agrawal
Central Manufacturing Technology Institute, Bengaluru, Karnataka 560 022, India
Bottumanchi Morish Manohar
Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641 114, India
Kusuma Nagarajaiah
Central Manufacturing Technology Institute, Bengaluru, Karnataka 560 022, India

Abstract


Copper (Cu) is used as an interconnect material in many applications owing to its high thermal, electrical conductivity and excellent electromigration resistance. Though this material has many advantages, the main drawback is that it gets oxidized on exposure to air. Thermo-compression bonding is a wafer bonding technique that uses metal layers for heaping wafers, which aids in attaining outstanding electrical conductivity without weakening the mechanical properties. The adsorbed oxide layer hurdles the proper bonding to happen between the wafers. In order to enhance the diffusion between the metal layers, the copper oxide layer should be removed which necessitates the requirement of high temperature, pressure, long bonding time and the inert gas atmosphere throughout the Cu-Cu thermo compression wafer bonding process. Simultaneous application of high temperature and pressure for a long time leads to the deterioration of the underlying sensitive components. This paper aims to present several techniques such as surface treatment, chemical pretreatment, surface passivation, crystal orientation modification, stress gradient in the thin film and formic acid vapour treatment which are used in order to avoid the deterioration of underlying sensitive devices and to obtain a proper bonding between the wafers at low temperature and pressure.