Open Access Open Access  Restricted Access Subscription Access

Evaluation of pharmacological and catalytic activity of CuO and Zn doped CuO nanoparticles


Affiliations
1 Centre for Research and Evaluation, Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
2 Department of Chemistry, Chikkaiah Naicker College, Erode, Tamil Nadu 638 004,, India
3 Department of Chemistry, M Kumarasamy College of Engineering, Karur, Tamil Nadu 639 113,, India

CuO and Zn doped CuO nanoparticles (Zn-CuO NPs) with varying concentration i.e., ZnxCu1−xO (where x = 0, 0.5, 1, and 1.5%) have been prepared via microwave assisted method. The spheroid structure of CuO NPs and the nanorod structure of Zn- CuO NPs have been determined using High Resolution Scanning Electron Microscopy (HR-SEM) analysis. Elemental analysis has been carried out using Energy Dispersive X-ray Analysis (EDAX). The particle size and surface area of CuO and Zn-CuO NPs have been confirmed by Brunauer–Emmett–Teller (BET) method. The antibacterial studies have been revealed that Zn(1.5%)-CuO NPs exhibited maximum zone of inhibition (19-29 mm) against the tested four bacterial strains. Zn-CuO NPs have been displayed robust action of antibacterial activity with minimum inhibitory concentration (MIC) of 0.09 μM against Campylobacter coli (C. Coli). DPPH and H2O2 radical scavenging assay investigation have been revealed that the significant scavenging activity has showed by Zn(1.5%)-CuO. The in vitro cytotoxicity evaluation of synthesized material against human breast (MCF7) and human lung (A549) cancer cell lines have been demonstrated that Zn(1.5%)-CuO NPs exhibited better cytotoxic activity against MCF7 cell lines (97.5% cell death) than A549 cell lines (90% cell death).
User
Notifications
Font Size

Abstract Views: 85




  • Evaluation of pharmacological and catalytic activity of CuO and Zn doped CuO nanoparticles

Abstract Views: 85  | 

Authors

R Saranya
Centre for Research and Evaluation, Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
M Mubarak Ali
Department of Chemistry, Chikkaiah Naicker College, Erode, Tamil Nadu 638 004,, India
K Jeyalakshmi
Department of Chemistry, M Kumarasamy College of Engineering, Karur, Tamil Nadu 639 113,, India

Abstract


CuO and Zn doped CuO nanoparticles (Zn-CuO NPs) with varying concentration i.e., ZnxCu1−xO (where x = 0, 0.5, 1, and 1.5%) have been prepared via microwave assisted method. The spheroid structure of CuO NPs and the nanorod structure of Zn- CuO NPs have been determined using High Resolution Scanning Electron Microscopy (HR-SEM) analysis. Elemental analysis has been carried out using Energy Dispersive X-ray Analysis (EDAX). The particle size and surface area of CuO and Zn-CuO NPs have been confirmed by Brunauer–Emmett–Teller (BET) method. The antibacterial studies have been revealed that Zn(1.5%)-CuO NPs exhibited maximum zone of inhibition (19-29 mm) against the tested four bacterial strains. Zn-CuO NPs have been displayed robust action of antibacterial activity with minimum inhibitory concentration (MIC) of 0.09 μM against Campylobacter coli (C. Coli). DPPH and H2O2 radical scavenging assay investigation have been revealed that the significant scavenging activity has showed by Zn(1.5%)-CuO. The in vitro cytotoxicity evaluation of synthesized material against human breast (MCF7) and human lung (A549) cancer cell lines have been demonstrated that Zn(1.5%)-CuO NPs exhibited better cytotoxic activity against MCF7 cell lines (97.5% cell death) than A549 cell lines (90% cell death).