Open Access
Subscription Access
Effect of Gamma Rays Exposure on Cu-Se Heterojunction Nanowires
Metal-semiconductor hetero-junction nanowires are a new class of material created by combining metallic and semiconducting materials. These materials exhibit unique features that could not be seen in the separate components at the nanoscale. With the development of technology, nanowire-based semiconducting elements play a significant part in the generation of new devices that are currently expanding quickly. Pre and post gamma exposed Cu-Se heterojunctioned nanowires were characterised to recognize the impact of gamma exposure. I-V measurements of heterojunction nanowires reveal an increase in current with the gamma dose. XRD of Cu-Se nanowires before and after irradiation showed no change in peak positions, but there were a variation in grain size and the texture coefficient. UV-Vis spectroscopy demonstrates that the optical band gap decreases with dose rate.1
Keywords
Heterojunction, Gamma Irradiation, Structural properties, Optical properties, Electrical properties.
User
Font Size
Information
- Fan X, Zeng G, LaBounty C, Bowers J E, Croke E, Ahn C C & Shakouri A, Appl Phys Let, 78 (11)(2001) 1580.
- Duan X, Huang Y, Agarwal R, & Lieber C M, Nature, 421 (6920) (2003) 241.
- Cui Y & Lieber C M, science, 291 (5505)(2001) 851.
- Law M, Goldberger J & Yang P, Annu Rev Mater Re, 34 (2004) 83.
- Umana-Membreno G A, Dell J M, Parish G, Nener B D, Faraone L, & Mishra U K, IEEE Trans Electron Devices, 50 (12)(2003) 2326.
- Güllü Ö, Çankaya M U R A T, Biber M, & Türüt A B D U L M E C İ T, J Phys D Appl Phys, 41 (13)(2008) 135103.
- Ocak Y S, Kılıçoğlu T, Topal G, & Başkan M H, Nucl Instrum Methods Phys Res A Accel. Spectrom Detect Assoc Equip, 612 (2)(2010) 360.
- Ali S M, Ramay S M, Rehman N U, ALKhuraiji T S, Shar M A, Mahmood A, & Riaz M, Mater Sci Semicond Process, 93 (2019) 44.
- Kaya S, Yıldız I, Lok R, & Yılmaz E, Radiat Phys Chem, 150 (2018) 64.
- Panchal S, & Chauhan R P, J Mater Sci Mater Electron, 31 (2020) 693.
- Felix J F, da Cunha D L, Aziz M, da Silva Jr E F, Taylor D, Henini M, & de Azevedo W M, Radiat Meas, 71 (2014) 402.
- Naumov A V, Kaliuzhnyi V V, Vitusevich S A, Hardtdegen H, & Belyaev A E, Semicond phys quantum electron, 24 (4)(2021) 407.
- Kaya S, Yıldız I, Lok R, & Yılmaz E, Radiat Phys Chem, 150 (2018) 64.
- Lavanya N, Sekar C, Anithaa A C, Sudhan N, Asokan K, Bonavita A & Neri G, Nanotechnology, 27 (38)(2016) 385502.
- Ishfaq M, Khan M R, Ali A, Bhardwaj S, Cepek C, & Bhatti A S, Mater Sc Semicond Process, 63 (2017) 107.
- Narula C, & Chauhan R P, Radiat Phys Chem, 144 (2018) 405.
- Chintala K M, Panchal S, Rana P, & Chauhan R P, J Mater Sci Mater Electron, 27 (2016), 8087.
- Rana P, & Chauhan R P, J Mater Sci Mater Electron, 25 (2014) 5630.
- Rideout V L, Thin Solid Films, 48 (3)(1978) 261. 20 Bardeen J, Physical review, 71 (10)(1947) 717. 21 Aydoğan Ş, Yilmaz M, & Çaldıran Z, Sens Actuator A Phys, 248 (2016) 22.
- Sana P, Verma S, Malik M M, IEEE Trans Device Mater Reliab, 13 (3)(2013) 407.
- Jayavel P, Udhayasankar M, Kumar J, Asokan K, Kanjilal D, Nucl Instrum Methods B, 156 (1999) 110.
- Sharma A T, Kumar S, Katharria Y S, & Kanjilal D, Appl Surf Sci, 254 (2)(2007) 459.
Abstract Views: 91
PDF Views: 52