Open Access Open Access  Restricted Access Subscription Access

Alkali Pre-treatment of Jute Yarns for Reinforcement in Epoxy Composites


Affiliations
1 Department of Textile Technology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
 

In this study, alkali treatment of jute yarns of different counts has been carried out for their subsequent application as reinforcing material in composite. The alkali treatment conditions have been optimised to improve the interaction between fibrous material and matrix. It is observed that the responses of different yarns are different. Other than the types of fibre, the structure of yarn has significant influence on the responses. The maximum tenacity is obtained at a lower alkali concentration for the lower count (4 lb/spyndle) and at a higher alkali concentration for the highest count (12 lb/spyndle). While for the medium counts of 6 lb/spyndle, 8 lb/spyndle, and 10 lb/spyndle, maximum tenacity is obtained at 10% NaOH concentration. XRD, FTIR, and SEM studies authenticate the partial delignification of the jute yarn and increase in the crystallinity after the alkali treatment.

Keywords

Alkali Treatment, Epoxy Composites, Jute Yarn, Linear Density, Tensile Properties.
User
Notifications
Font Size

  • Mahir F I, Keya K N, Sarker B, Nahiun K M & Khan R A, Mater Eng Res, 1 (2019) 88.
  • Ryszard K M, Maria M T, Malgorzata M & Jorge B B, Mol Cryst Liq Cryst, 556 (2012) 200.
  • Begum K & Islam M A, Res J Eng Sci, 2 (2013) 46.
  • Buitrago B, Jaramillo F & Gomez M, J Nat Fibers, 12 (2015) 357
  • Malik D S, Jain C K & Yadav AK, Appl Water Sci, 7 (2017) 2113
  • Salman S D, J Ind Text, 51 (2019)1.
  • Bajwa D S & Bhattacharjee S, J Nat Fibers, 13 (2016) 660
  • Thyavihalli Girijappa Y G, Mavinkere Rangappa S, Parameswaranpillai J & Siengchin S, Front Mater, 6 (2019) 1.
  • Madhu P, Sanjay M R, Senthamaraikannan P, Pradeep S, Saravanakumar S S & Yogesha B, J Nat Fibers, 16 (2019)1132
  • Samanta A K, Mukhopadhyay A & Ghosh S K, Handbook of Natural Fibres (Elsevier Ltd),2020, 49
  • Banerjee P K. Environmental Textiles from Jute and Coir (Elsevier Ltd), 2020, 621.
  • Datta U, J Nat Fibers, 4 (2007) 67.
  • Shukla S, Tiwari R P, Rajbhar V & Mittal A. Geotechnics for Transportation Infrastructure (Springer Singapore), 2019, 295
  • Singh H, Singh J I P, Singh S, Dhawan V & Tiwari S K, Mater Today Proc, 5 (2018) 28427.
  • Balcıoglu H E, Res Eng Struct Mater, 5(2019) 213.
  • Thomas M G, Abraham E, Jyotishkumar P, Maria H J, Pothen L A & Thomas S, Int J Biol Macromol, 81 (2015) 768.
  • Ghosh R K, Ray D P & Chakraborty S, Int J Environ Anal Chem, (2020), 1.
  • Chen W, Zhang S, He F, Lu W & Xv H, J Mater Cycles Waste Manag, 21 (2019) 315.
  • Saha P, Chowdhury S, Roy D, Adhikari B, Kim J K & Thomas S, Polym Bull, 73 (2016) 587.
  • Ferreira D P, Cruz J & Fangueiro R, Green Composites for Automotive Applications (Elsevier), 2019,3.
  • M.R. S, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu C I & Khan A, Carbohydr Polym, 207 (2019) 108.
  • Sahu P & Gupta M K, J Mater Des Appl, 0 (2019) 1.
  • Kapatel P M, J Nat Fibers, (2019) 1.
  • Manikandan N, Morshed M N & Karthik R, Am J Curr Org Chem, 3 (2017) 9.
  • Sudha S & Thilagavathi G, J Text Inst, 107 (2016) 691.
  • Mukherjee A, Ganguly P K, Sur & D D, J Text Inst, 84 (1993) 348.
  • Ray D, Sarkar B K, Rana A K & Bose N R, Compos Part A, 32 (2001) 119.
  • Kumar P, Tiwari M & Elizabeth M, Trans Indian Inst Met, 73 (2020) 1573.
  • Sayeed M M A & Paharia A, J Text Inst, 110 (2019) 1588.
  • Bossunia M T I, Poddar P & Hasan M M, J Mater Sci Eng, 5 (2016).
  • Gassan J & Bledzki A K, Compos Sci Technol, 59 (1999) 1303.
  • Owen M, Int J Fiber Text Res, 4 (2014) 32.
  • Lakshmanan A, Ghosh R K, Dasgupta S, Chakraborty S & Ganguly P K, J Ind Text, 47 (2018) 640.
  • Messiry M E l, Alexandria Eng J, 52 (2013) 301.
  • Shah D U, Schubel P J & Clifford M J, J Compos Mater, 47 (2012) 425
  • Zakaria M, Ahmed M, Hoque M & Shaid A, J Nat Fibers, (2018) 1.
  • Ioelovich M Y & Veveris G P, J Wood Chem, 80 (1987) 72
  • Correia C A, Oliveira L M de & Valera T S, Mater Res, 20 (2017) 466
  • Shao X, Qiu Y & Wang Y, J Text Inst, 96 (2005) 61
  • Goswami B C, Martindle J G & Scardino F L,Textile Yarns; Technology, Stracture, and Applications (John Wiley and Sons), 1995.
  • Emmanuel E, Yong L L, Asadi A, & Anggraini V, J Nat Fibers, 00 (2020) 1.
  • Salih A A, Zulkifli R & Azhari C H, J Nat Fibers, April (2020) 1.
  • Shaha S K, Dyuti S, Ahsan Q & Hasan M, Adv Mater Res, 264 (2011) 1922.
  • Mishra L, Basu G & Samanta A K, Fibers Polym, 18 (2017) 357.
  • Goda K, Sreekala M S, Gomes A, Kaji T & Ohgi J, Compos Part A Appl Sci Manuf, 37 (2006) 2213.
  • Majumder A, Samajpati S, Ganguly P K, Sardar D & Gupta P C D, Text Res J, 50 (1980) 575.
  • Jabbar A, Militky J, Wiener J, Kale B M, Ali U & Rwawiire S, Compos Struct, 161 (2017) 340.
  • Delgado-Aguilar M, Oliver-Ortega H, Alberto Méndez J, Camps J, Espinach FX & Mutje P, Int J Biol Macromol, 116 (2018) 299.
  • Singh H & Chatterjee A, Cellulose, 27(2020) 255

Abstract Views: 199

PDF Views: 122




  • Alkali Pre-treatment of Jute Yarns for Reinforcement in Epoxy Composites

Abstract Views: 199  |  PDF Views: 122

Authors

Manu Aggarwal
Department of Textile Technology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
A. Chatterjee
Department of Textile Technology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India

Abstract


In this study, alkali treatment of jute yarns of different counts has been carried out for their subsequent application as reinforcing material in composite. The alkali treatment conditions have been optimised to improve the interaction between fibrous material and matrix. It is observed that the responses of different yarns are different. Other than the types of fibre, the structure of yarn has significant influence on the responses. The maximum tenacity is obtained at a lower alkali concentration for the lower count (4 lb/spyndle) and at a higher alkali concentration for the highest count (12 lb/spyndle). While for the medium counts of 6 lb/spyndle, 8 lb/spyndle, and 10 lb/spyndle, maximum tenacity is obtained at 10% NaOH concentration. XRD, FTIR, and SEM studies authenticate the partial delignification of the jute yarn and increase in the crystallinity after the alkali treatment.

Keywords


Alkali Treatment, Epoxy Composites, Jute Yarn, Linear Density, Tensile Properties.

References