Open Access Open Access  Restricted Access Subscription Access

Fabrication and Mechanical/Thermal Properties of Composites from Cotton Linter and Urea Formaldehyde Resin


Affiliations
1 Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
2 Pilot Plant and Process Development Centre, Bangladesh Council for Scientific and Industrial Research, Dhaka, Bangladesh
 

The aim of this study is to prepare composite from commercial valueless cotton linter cellulose (CLC) of textile mills and garment industries, and urea formaldehyde (UF) resin. The alkali-treated cellulose (ATC), bleached cellulose (BLC) and microcrystalline cellulose (MCC) have been prepared from CLC. A novel fabrication method of CLC, ATC, BLC and MCC reinforced with urea formaldehyde resin has been developed. These composites are subsequently subjected to evaluation of their mechanical (tensile, flexural, hardness) and thermal (TGA, DTA, DTG) properties. The MCC-UF composites show the highest tensile strength (TS), flexural strength (FS) and Vickers micro hardness number (VHN) having the corresponding values 48.09 MPa, 34.05 MPa and 521.33 VHN respectively. The lowest mechanical values are found for CLC-UF composites (TS 32.96 MPa, FS21.28 MPa and VHN201.00). It is also revealed that the mechanical properties of the composites increase with the increase in fibre loading up to 5% and beyond this loading, these values are decreased. The morphological changes in flexural fractured surface are clearly observed by scanning electron microscopy measurement. The thermal stability of the composites is influenced by the filler content. The thermal stability of MCC-UF composite is found slightly higher than those of other composites.

Keywords

Composite, Cotton Linters, Microcrystalline Cellulose, Mechanical Properties, Thermal Properties, Urea Formaldehyde Resin.
User
Notifications
Font Size

  • Baghaei B & Skrifvars M, Molecules, 25 (2020) 2836.
  • Pickering K L, Efendy MA & Le TM, Compos Part A, 83 (2016) 98.
  • El-Abbassi FE, Assarar M, Ayad R, Bourmaud A & Baley C, Compos Part A, 128 (2020)105677.
  • Rizal S, Khalil A H P S, Oyekanmi AA, Gideon ON, Abdullah CK, Yahya EB, Alfatah T, Sabaruddin FA & Rahman AA, Polymers, 13 (2021)1006.
  • Priya SY, Khan GMA, Uddin MH, Haque MA, Islam M S & Gafur M A, Am Chem Sci J, 9(2015) 1-8.
  • Khan GMA, Abdullah-Al-Mamun M, Haque MA, Rahman M S, Shaikh H, Anis A & Alam M S, Indian J Fibre Text Res, 42 (2017) 291.
  • Sczostak A,Macromol Symp, 280 (2009) 45.
  • Ashori A & Nourbakhsh A, Compos Part B Eng, 41 (2010) 578.
  • Siqueira G, Bras J & Dufresne A C, Polymers (Basel), 2 (2010) 728.
  • Oksman K, Mathew AP, Bondeson D & Kvien I, Compos Sci Technol, 66 (2006) 2776.
  • Qua EH, Hornsby PR, Sharma HS S, Lyons G & McCall RD, J Appl Polym Sci, 113(2009) 2238.
  • Ge H, Zhang L, Xu M, Cao J & Kang C, Preparation of Dialdehyde Cellulose and Its Antibacterial Activity, in Advances in Applied Biotechnology, ICAB 2016. Lecture Notes in Electrical Engineering, edited by H Liu, C Song and A Ram. Vol 444 ( Springer, Singapore) 2016.
  • Pizzi A & Mittal K L, Urea-Formaldehyde Adhesives, Handbook of Adhesive Technology, 2nd edn (Marcel Dekker, New York), 2003.
  • Khan GMA, Abedin SMA, Choudhury MJ, Gafur M A & Alam MS, Res Rev J Mater Sci, 2 (2014) 32.
  • Dunky M,Int J Adhes Adhes, 18(1998) 95.
  • Shi J, Li J, Zhou W & Zhang D, Front For China, 2(2007)104.
  • Khan GMA, Yilmaz N D & Yilmaz K, J Nat Fibers, 19 (2022) 1126.
  • Khan GMA, Shaikh H, Alam M S & Gafur M A, BioResources, 10 (2015) 7386.
  • Khan GMA, Yilmaz N D & Yilmaz K, J Text Inst, 111 (2020) 1418.
  • Fu S Y, Feng X Q, Lauke B & Mai Y W, Compos Part B Eng, 39 (2008) 933.
  • Khan GMA, Palash SR S, Alm M S, Chakraborty AK, Gafur M A & Terano M, Polym Compos, 33(2012) 764.
  • Khan GMA, Shams MS, Kabir MR, Gafur M A, Terano M & Alam MS, J Appl Polym Sci,128 (2013)1020.
  • Richard BD, Wahi A, Nani R, Iling E, Siti D & Ali H, Int J Integrated Eng, 11 (2019)122.
  • Prasad AV R, Rao M & Nagasrinivasulub G, Indian J Fibre Text Res, 34 (2009)162.
  • Gupta A, J Surf Eng Mater Adv Technol, 02 (2012) 149.
  • Khan G MA, Palash SR S, Terano M & Alam MS, Mater Chem Phys, 01 (2015) 110.
  • Ku H, Wang H, Pattarachaiyakoop N & Trada M, Compos Part B Eng, 42 (2011) 856.
  • Korpela T E, Salstela J, Suvanto M & Pakkanen T T, Wear, 310 (2014) 20.
  • Bourmaud A & Pimbert S, Compos Part A Appl Sci Manuf, 39 (2008) 1444.
  • De Sa RM, De Miranda C S & Jose NM, Mater Res, 18 (2015) 225.
  • Khan GMA, Haque M A, Terano M & Alam MS, J Appl Polym Sci, 131 (2014) 40139.
  • Yang Z & Sun C T, ASME J Eng Mater Technol, 122(2000) 428.
  • Standard Test Method for Tensile Properties of Plastics, ASTM Des, D 638-98.
  • Standard Test Method for Flexural Strength (Modulus of Rupture) of Electronic-Grade Ceramics, ASTM Des, (1991) F 417-78.
  • Kumar TV & Chandrasekaran M, Int J Mech eng, 9(2018) 147.
  • Zhu H, Li Y, Pettersson B, Zhang L, Lindström M & Henriksson G, J Adhes Sci Technol, 28 (2014) 490.
  • Ahmed E, Das AK, Hannan M O & Shams MI, Bangladesh J Sci Ind Res, 51 (2016) 239.
  • Kamath BMG, Bhat G S, Parikh D V & Mueller D, Int Nonwoven J, 14 (2005) 34.
  • Pereira C, Caldeira F & Irle M, Eur J wood Prod, 70 (2021) 107.
  • Han J, Zhou C, Wu Y, Liu F & Wu Q, Biomacromolecules, 14 (2013) 1529.
  • Yue Y, Han G & Wu Q, BioResources, 8 (2013) 6460.
  • Ghosh R, Krishna AR, Reena G & Raju BL, Int J Adv Eng Sci Technol, 4 (2011) 89.
  • Srinivasa CV, Basavaraju B, Kenchappa M G & Ranganagowda RPG, Bio-Resources, 5 (2010) 1845.
  • Al-Mosawi A I, Al-Qadisiya J Eng Sci, 2(2009) 14.
  • Pokhrel S, Shrestha M, Slouf M, Sirc J & Adhikari R, Int J Compos Mat, 10 (2020) 29.
  • Dhakal HN, Zhang ZY, Bennett N, Lopez-Arraiza A & Vallejo F, J Compos Mater, 48 (2014)1399.
  • Sharma N, Sharma S, Guleria SP & Batra NK, Int J Soft Comput Eng, 5 (2015) 66.
  • Goodrich T W,The Physical Properties and Microstructural Changes of Composite Materials at Elevated Temperature, Thesis Master of Science in Mechanical Engineering, Virginia Technical University, 2009.
  • Alaei MH, Mahajan P, Brieu M, Kondo D, Rizvi S J A, Kumar S & Bhatnagar N, Iran Polym J, 22 ( 2013) 853.

Abstract Views: 137

PDF Views: 85




  • Fabrication and Mechanical/Thermal Properties of Composites from Cotton Linter and Urea Formaldehyde Resin

Abstract Views: 137  |  PDF Views: 85

Authors

Moshiur Rahman
Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
G. M. Arifuzzaman Khan
Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
S. M. Abdur Razzaque
Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
M. Ahsanul Haque
Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
M. A. Gafur
Pilot Plant and Process Development Centre, Bangladesh Council for Scientific and Industrial Research, Dhaka, Bangladesh
M. Shamsul Alam
Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh

Abstract


The aim of this study is to prepare composite from commercial valueless cotton linter cellulose (CLC) of textile mills and garment industries, and urea formaldehyde (UF) resin. The alkali-treated cellulose (ATC), bleached cellulose (BLC) and microcrystalline cellulose (MCC) have been prepared from CLC. A novel fabrication method of CLC, ATC, BLC and MCC reinforced with urea formaldehyde resin has been developed. These composites are subsequently subjected to evaluation of their mechanical (tensile, flexural, hardness) and thermal (TGA, DTA, DTG) properties. The MCC-UF composites show the highest tensile strength (TS), flexural strength (FS) and Vickers micro hardness number (VHN) having the corresponding values 48.09 MPa, 34.05 MPa and 521.33 VHN respectively. The lowest mechanical values are found for CLC-UF composites (TS 32.96 MPa, FS21.28 MPa and VHN201.00). It is also revealed that the mechanical properties of the composites increase with the increase in fibre loading up to 5% and beyond this loading, these values are decreased. The morphological changes in flexural fractured surface are clearly observed by scanning electron microscopy measurement. The thermal stability of the composites is influenced by the filler content. The thermal stability of MCC-UF composite is found slightly higher than those of other composites.

Keywords


Composite, Cotton Linters, Microcrystalline Cellulose, Mechanical Properties, Thermal Properties, Urea Formaldehyde Resin.

References