The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The aim of this study is to prepare composite from commercial valueless cotton linter cellulose (CLC) of textile mills and garment industries, and urea formaldehyde (UF) resin. The alkali-treated cellulose (ATC), bleached cellulose (BLC) and microcrystalline cellulose (MCC) have been prepared from CLC. A novel fabrication method of CLC, ATC, BLC and MCC reinforced with urea formaldehyde resin has been developed. These composites are subsequently subjected to evaluation of their mechanical (tensile, flexural, hardness) and thermal (TGA, DTA, DTG) properties. The MCC-UF composites show the highest tensile strength (TS), flexural strength (FS) and Vickers micro hardness number (VHN) having the corresponding values 48.09 MPa, 34.05 MPa and 521.33 VHN respectively. The lowest mechanical values are found for CLC-UF composites (TS 32.96 MPa, FS21.28 MPa and VHN201.00). It is also revealed that the mechanical properties of the composites increase with the increase in fibre loading up to 5% and beyond this loading, these values are decreased. The morphological changes in flexural fractured surface are clearly observed by scanning electron microscopy measurement. The thermal stability of the composites is influenced by the filler content. The thermal stability of MCC-UF composite is found slightly higher than those of other composites.

Keywords

Composite, Cotton Linters, Microcrystalline Cellulose, Mechanical Properties, Thermal Properties, Urea Formaldehyde Resin.
User
Notifications
Font Size