Open Access Open Access  Restricted Access Subscription Access

Molecular Phylogeny Reconstruction and Biogeographic Pattern of Rays (Elasmobranchii: Myliobatiformes) From Indian Coastal Waters


Affiliations
1 Cente for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu – 600 119, India
2 Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu – 623 526, India
 

In the present study, the phylogenetic relationship among Myliobatiformes was reconstructed from the Indian waters based on the cytochrome c oxidase subunit I (COXI) gene. Overall, 307 sequences (18 collected from Mandapam fish landing centres, Tamil Nadu, and 289 from the previous literatures) from 34 species of Myliobatiformes were clustered under two major phylogenetic clades. The families Mobulidae, Rhinopteridae, Plesiobatidae, and Gymuridae were monophyletic, while the families Myliobatidae and Dasyatidae were polyphyletic. Further, the genera Aetomylaeus (Myliobatidae) and Pateobatis (Dasyatidae) show polyphyly by showing deep genetic divergence in the phylogenetic tree. Based on the phylogenetic tree analysis, Himanutra uarnak appears to be H. tutul in the Indian waters. Similarly, Neotrygon indica should be consistently used instead of N. kuhlii, as Indian specimens forms a distinct subclade within N. kuhlii species complex. In this study, it is also observed that several entries in the NCBI GenBank are erroneous; thus, an updation of data is recommended based on the present study. The biogeographic patterns revealed H. tutul, Maculabatis gerrardi, Brevitrygon imbricata, and Gymnura poecilura from the Indian coast form a separate haplotype compared to other geographical areas (Indo-west Pacific). In addition, G. poecilura and B. imbricata were genetically divergent between east and west coast populations of India, indicating a possibility of cryptic species.

Keywords

Haplotype network, Indian coast, Marine rays, Phylogeny, Ray‘s taxonomy
User
Notifications
Font Size

  • Kizhakudan S J, Akhilesh K, Thomas S, Yousuf K, Sobhana K, et al., Field identification of batoids–a guide to Indian species, (ICAR-Central Marine Fisheries Research Institute, Kochi), 2018, pp. 102.
  • Kizhakudan S J, Zacharia P U, Thomas S, Vivekanandan E & Muktha M, Guidance on national plan of action for sharks in India, (ICAR-Central Marine Fisheries Research Insitute, Kochi), 2015, pp. 102.
  • Mohamed K, Sathianandan T, Zacharia P, Asokan P, Krishnakumar P, et al., Depleted and collapsed marine fish stocks along southwest coast of India–A simple criterion to assess the status, In: Coastal Fishery Resources of India - Conservation and Sustainable Utilisation, (Society of Fisheries Technologists, Kochi), 2010, pp. 67-76.
  • Eschmeyer W N, Fricke R & Van der Laan R, Catalog of fishes: genera, species, references, Accessed on 12th December 2020 (2017). https://www.calacademy.org/ scientists/projects/eschmeyers-catalog-of-fishes
  • Raje S, Sivakami S, Mohanraj G, Manojkumar P, Raju A, et al., Atlas on the Elasmobranch fishery resources of India, (ICAR- Central Marine Fisheries Research Institute, Kochi), 2007, pp. 266.
  • Pavan-Kumar A, Gireesh-Babu P, Babu P P S, Jaiswar A K, Hari Krishna V, et al., Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers, Mol Biol Rep, 41 (2013) 447–457. https://doi.org/10.1007/s11033-013-2879-6
  • Pavan-Kumar A, Gireesh-Babu P, Suresh Babu P P, Jaiswar A K, Prasad K P, et al., DNA barcoding of elasmobranchs from Indian Coast and its reliability in delineating geographically widespread specimens, Mitochondrial DNA B: Resour, 26 (2013) 92–100. https://doi.org/10.3109/1940 1736.2013.823174 8 Akhilesh K V, Bineesh K K, Gopalakrishnan A, Jena J K, Basheer V S, et al., Checklist of Chondrichthyans in Indian waters, J Mar Biol Assoc India, 56 (2014) 109–120.
  • Bineesh K, Akhilesh K, Sajeela K, Abdussamad E, Gopalakrishnan A, et al., DNA barcoding confirms the occurrence rare elasmobranchs in the Arabian Sea of Indian EEZ, Middle East J Sci Res, 19 (2014) 1266–1271.
  • Bineesh K K, Gopalakrishnan A, Akhilesh K V, Sajeela K A, Abdussamad E M, et al., DNA barcoding reveals species composition of sharks and rays in the Indian commercial fishery, Mitochondrial DNA Part A, 28 (2016) 458–472. https://doi.org/10.3109/19401736.2015.1137900
  • Muktha M, Akhilesh K, Sandhya S, Jasmin F, Jishnudev M, et al., Re-description of the longtail butterfly ray, Gymnura poecilura (Shaw, 1804) (Gymnuridae: Myliobatiformes) from Bay of Bengal with a neotype designation, Mar Biodivers, 48 (2018) 1085–1096.
  • Pavan-Kumar A, Kumar R, Pitale P, Shen K-N & Borsa P, Neotrygon indica sp. nov., the Indian Ocean blue-spotted maskray (Myliobatoidei, Dasyatidae), C R Biol, 341 (2018) 120–130. https://doi.org/10.1016/j.crvi.2018.01.004
  • Kundu S, Tyagi K, Mohanty S R, Roy S, Mohapatra A, et al., DNA barcoding inferred maternal philopatric affinity of ocean maskray (Neotrygon indica) in the Bay of Bengal, Mitochondrial DNA Part B, 4 (2019) 1924–1929. https://doi.org/10.1080/23802359.2019.1616622
  • Tyabji Z, Wagh T, Patankar V, Jabado R W & Sutaria D, Catch composition and life history characteristics of sharks and rays (Elasmobranchii) landed in the Andaman and Nicobar Islands, India, Plos One, 15 (10) (2020) p. e0231069. https://doi.org/10.1371/journal.pone.0231069
  • Bineesh K K, Kumar R R, Venu S, Nashad M, Basheer V S, et al., Fifteen new records of Batoids (Elasmobranchii) from waters off Andaman and Nicobar Islands, India, J Mar Biol Assoc India, 62 (2020) 21–28.
  • Arlyza I S, Shen K N, Solihin D D, Soedharma D, Berrebi P, et al., Species boundaries in the Himantura uarnak species complex (Myliobatiformes: Dasyatidae), Mol Phylogenetics Evol, 66 (2013) 429–435. https://doi.org/10.1016/j.ympev. 2012.09.023
  • García V B, Lucifora L O & Myers R A, The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras, Philos Trans R Soc Lond B Biol Sci, 275 (2008) 83–89.
  • Dulvy N K, Fowler S L, Musick J A, Cavanagh R D, Kyne P M, et al., Extinction risk and conservation of the world‘s sharks and rays, eLife, 3 (2014) p. e00590.
  • Hosegood J, Humble E, Ogden R, De Bruyn M, Creer S, et al., Phylogenomics and species delimitation for effective conservation of manta and devil rays, Mol Ecol, 29 (2020) 4783–4796.
  • Ward R D, Holmes B H, White W T & Last P R, DNA barcoding Australasian chondrichthyans: results and potential uses in conservation, Mar Freshw Res, 59 (2008) 57–71.
  • Hebert P D, Cywinska A, Ball S L & Dewaard J R Biological identifications through DNA barcodes, Philos Trans R Soc Lond B Biol Sci, 270 (2003) 313–321.
  • Ward R D, Zemlak T S, Innes B H, Last P R & Hebert P D, DNA barcoding Australia's fish species, Philos Trans R Soc Lond B Biol Sci, 360 (2005) 1847–1857.
  • Zhang J-B & Hanner R, DNA barcoding is a useful tool for the identification of marine fishes from Japan, Biochem Syst Ecol, 39 (2011) 31-42.
  • Cerutti-Pereyra F, Meekan M G, Wei N-W V, O'Shea O, Bradshaw C J, et al., Identification of rays through DNA barcoding: an application for ecologists, Plos One, 7 (2012) p. e36479.
  • Borsa P, Shen K-N, Arlyza I S & Hoareau T B, Multiple cryptic species in the blue-spotted maskray (Myliobatoidei: Dasyatidae: Neotrygon spp.): An update, C R Biol, 339 (2016) 417–426. https://doi.org/10.1016/ j.crvi.2016.07.004
  • Pradeep H D, Swapnil S S, Nashad M, Venu S, Ranjan K R, et al., First record and DNA barcoding of Oman cownose ray, Rhinoptera jayakari Boulenger, 1895 from Andaman Sea, India, Zoosystema, 40 (2018) 67–74.
  • Kumar R R, Venu S, Akhilesh K V & Bineesh K K, Report of zonetail butterfly ray, Gymnura zonura (Bleeker, 1852) and mangrove stingray Urogymnus granulatus (Macleay 1883) (Chondrichthyes: Myliobatiformes) from Andaman waters, India, Thalassas, 13 (2020) 1-9. https://doi.org/10.1007/s41208-021-00302-7
  • Puckridge M, Last P R, White W T & Andreakis N, Phylogeography of the Indo‐West Pacific maskrays (Dasyatidae, Neotrygon): A complex example of chondrichthyan radiation in the Cenozoic, Ecol Evol, 3 (2013) 217–232.
  • Lim K C, Lim P-E, Chong V C & Loh K-H, Molecular and morphological analyses reveal phylogenetic relationships of stingrays focusing on the family Dasyatidae (Myliobatiformes), Plos One, 10 (2015) p. e0120518.
  • Poortvliet M, Olsen J L, Croll D A, Bernardi G, Newton K, et al., A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences, Mol Phylogenetics Evol, 83 (2015) 72–85.
  • Borsa P, Durand J-D, Chen W-J, Hubert N, Muths D, et al., Comparative phylogeography of the western Indian Ocean reef fauna, Acta Oecol, 72 (2016) 72–86. https://doi.org/10.1016/j.actao.2015.10.009
  • White W & Last P, A review of the taxonomy of chondrichthyan fishes: a modern perspective, J Fish Biol, 80 (5) (2012) 901–917. https://doi.org/10.1111/j.1095-8649.2011.03192.x
  • Muktha M, Akhilesh K, Sukumaran S & Kizhakudan S J, New report confirming the presence of Bennett‘s stingray, Hemitrygon bennettii (Elasmobranchii: Myliobatiformes: Dasyatidae), from the western Bay of Bengal, Acta Ichthyol Piscat, 49 (2019) 101–108.
  • Kumar A, Adhavan D & Prakash S, DNA barcoding revealed first record of the ‗fine spotted whipray‘ Himantura tutul (Myliobatoidei: Dasyatidae) in the Indian coastal waters, J Appl Ichthyol, 36 (2020) 515–518.
  • Hall T A, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic acids symposium series, (Information Retrieval Ltd, London), 1999, pp. 95–98.
  • Trifinopoulos J, Nguyen L-T, von Haeseler A & Minh B Q, W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis, Nucleic Acids Res, 44 (2016) 232– 235.
  • Hoang D T, Chernomor O, von Haeseler A, Minh B Q & Vinh L S, UFBoot2: improving the ultrafast bootstrap approximation, Mol Biol Evol, 35 (2018) 518–522.
  • Kimura M, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J Mol Evol, 16 (1980) 111–120.
  • Kumar S, Stecher G & Tamura K, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol Biol Evol, 33 (2016) 1870–1874.
  • Clement M, Posada D & Crandall K A, TCS: a computer program to estimate gene genealogies, Mol Ecol, 9 (2000) 1657–1659.
  • Bandelt H-J, Forster P & Röhl A, Median-joining networks for inferring intraspecific phylogenies, Mol Biol Evol, 16 (1999) 37–48.
  • Leigh J W & Bryant D, Popart: full‐feature software for haplotype network construction, Methods Ecol Evol, 6 (2015) 1110–1116.
  • White W T, Corrigan S, Yang L, Henderson A C, Bazinet A L, et al., Phylogeny of the manta and devilrays (Chondrichthyes: Mobulidae), with an updated taxonomic arrangement for the family, Zool J Linnean Soc, 182 (2018) 50–75.
  • Naylor G J P, Caira J N, Jensen K, Rosana K A M, White W T, et al., A DNA Sequence–Based Approach To the Identification of Shark and Ray Species and Its Implications for Global Elasmobranch Diversity and Parasitology, Bull Am Mus Nat Hist, 367 (2012) 1–262. https://doi.org/10.1206/754.1
  • White W T, Last P R & Baje L, Aetomylaeus caeruleofasciatus, a new species of eagle ray (Myliobatiformes: Myliobatidae) from northern Australia and New Guinea, Ichthyol Res, 63 (2016) 94 – 109.
  • Richards V P, Henning M, Witzell W & Shivji M S, Species Delineation and Evolutionary History of the Globally Distributed Spotted Eagle Ray (Aetobatus narinari), J Hered, 100 (2009) 273–283. https://doi.org/10.1093/jhered/esp005
  • Sales J B L, de Oliveira C N, dos Santos W C R, Rotundo M M, Ferreira Y, et al., Phylogeography of eagle rays of the genus Aetobatus: Aetobatus narinari is restricted to the continental western Atlantic Ocean, Hydrobiologia, 836 (2019) 169–183. https://doi.org/10.1007/s10750-019-3949-0
  • Last P R, Naylor G J P & Manjaji-Matsumoto B M, A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights, Zootaxa, 4139 (2016) p. 345. https://doi.org/10.11646/zootaxa.4139.3.2
  • Fernando D, Bown R M, Tanna A, Gobiraj R, Ralicki H, et al., New insights into the identities of the elasmobranch fauna of Sri Lanka, Zootaxa, 4585 (2) (2019) 201–238.
  • Briggs J C & Bowen B W, A realignment of marine biogeographic provinces with particular reference to fish distributions, J Biogeogr, 39 (2012) 12–30.
  • Sarker A, Naher H, Huang J, Sarker K K, Baki M A, et al., Genetic diversity of Hilsa kelee collected from the Bay of Bengal and the Arabian Sea, Mar Biodiver, 50 (2020) p. 94. https://doi.org/10.1007/s12526-020-01114-3
  • DiBattista J D, Rocha L A, Hobbs J-P A, He S, Priest M A, et al., When biogeographical provinces collide: hybridization of reef fishes at the crossroads of marine biogeographical provinces in the Arabian Sea, J Biogeogr, 42 (2015) 1601–1614. https://doi.org/10.1111/jbi.12526
  • Sreelekshmi S, Sukumaran S, Kishor T G, Sebastian W & Gopalakrishnan A, Population genetic structure of the oceanic whitetip shark, Carcharhinus longimanus, along the Indian coast, Mar Biodiver, 50 (2020) p. 78. https://doi.org/10.1007/s12526-020-01104-5
  • Siedler G, Gould J & Church J A (eds), Ocean circulation and climate: observing and modelling the global ocean, 1st edn, (Academic Press, Elsevier), 2001, pp. 715.
  • Kumar A, Vinu Ganesh A & Prakash S, An assessment of marine and coastal diversity of Covelong, Chennai, India, Reg Stud Mar Sci, 48 (2021) p. 102034. https://doi.org/10.1016/j.rsma.2021.102034

Abstract Views: 77

PDF Views: 33




  • Molecular Phylogeny Reconstruction and Biogeographic Pattern of Rays (Elasmobranchii: Myliobatiformes) From Indian Coastal Waters

Abstract Views: 77  |  PDF Views: 33

Authors

Amit Kumar
Cente for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu – 600 119, India
S. Prakash
Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu – 623 526, India

Abstract


In the present study, the phylogenetic relationship among Myliobatiformes was reconstructed from the Indian waters based on the cytochrome c oxidase subunit I (COXI) gene. Overall, 307 sequences (18 collected from Mandapam fish landing centres, Tamil Nadu, and 289 from the previous literatures) from 34 species of Myliobatiformes were clustered under two major phylogenetic clades. The families Mobulidae, Rhinopteridae, Plesiobatidae, and Gymuridae were monophyletic, while the families Myliobatidae and Dasyatidae were polyphyletic. Further, the genera Aetomylaeus (Myliobatidae) and Pateobatis (Dasyatidae) show polyphyly by showing deep genetic divergence in the phylogenetic tree. Based on the phylogenetic tree analysis, Himanutra uarnak appears to be H. tutul in the Indian waters. Similarly, Neotrygon indica should be consistently used instead of N. kuhlii, as Indian specimens forms a distinct subclade within N. kuhlii species complex. In this study, it is also observed that several entries in the NCBI GenBank are erroneous; thus, an updation of data is recommended based on the present study. The biogeographic patterns revealed H. tutul, Maculabatis gerrardi, Brevitrygon imbricata, and Gymnura poecilura from the Indian coast form a separate haplotype compared to other geographical areas (Indo-west Pacific). In addition, G. poecilura and B. imbricata were genetically divergent between east and west coast populations of India, indicating a possibility of cryptic species.

Keywords


Haplotype network, Indian coast, Marine rays, Phylogeny, Ray‘s taxonomy

References