Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Object oriented JavaScript generalization technique

F. Fawzia Khan™?, Dr.K.Thilagam®

“Research Scholar, Department of Computer Science, Karpagam University, Coimbatore, Tamil Nadu, India
Associate Professor, Department of Computer Applications, Karpagam University, Coimbatore, Tamil Nadu, India
1fawziakhanphd@gmail.com

Abstract

Background/Objectives: To improve the performance of the browsers to support all functions of JavaScript by
introducing an efficient generalization technique.

Methods/Statistical analysis: Object Oriented JavaScript is a high-level, dynamic and interpreted programming
language used in the development of web pages and browsers as it provides user friendly environment. However
there are some JavaScript function exceptions that are unrecognized by the specified browsers causing performance
degradation. Hence in this paper, this problem in the browsers can be overcome by introducing a technique called
Object Oriented JavaScript Generalization (O0JG) technique.

Findings: In OOJG technique first the unrecognized functions are analyzed in each browser while using different
JavaScript programs. Then the generalization of functions is performed in which the related functions are used
instead of the unrecognized functions to obtain the desired performance.

Application/Improvements: The experimental results also show that the performance of the browsers can be
maintained with the proposed O0JG technique in an efficient manner.

Keywords: Object Oriented JavaScript Generalization, Chrome, Internet Explorer, Firefox

1. Introduction

Java script is a widely used high level dynamic programming language but highly user friendly and hence utilized
for the World Wide Web content production and the web page development. JavaScript has no classes but supports
constructors and prototyping to share functionality of code. Java script are highly dynamic and it is used to add
multimedia contents to the web pages and can show, hide, change, resize images, and create image rollovers [1].
Java script is an Object oriented language that considers the web page elements as objects with specific properties
thus providing the advantage of creating user friendly environment. JavaScript platforms provide dynamic client-side
Web applications because of its combination of expressiveness, performance, and host interoperability [2]. JavaScript
is an important part of the web browsers as it can only be written inside of HTML language which provides a user
friendly flexible environment to the users accessing the web page for information.

The use of JavaScript in the web browsers enables user friendly interface and faster browsing performance.
Advanced web browsers and mobile browsers use new techniques like Browser side template (BST) [3] for the
development of web pages but still the JavaScript based HTML code has been the most famous among the web
developers. There have been many high level browsers with efficient performance such as Chrome, Internet Explorer,
Opera, Safari, Firefox, etc. Each of these browsers has different features and hence may provide varying
performance. But the main objectives of the browsers do not change. However in some cases, the browsers may
provide varying responses due to inability to recognize some JavaScript functions. This problem has been considered
as the motivation for this research work.

In this paper, the problem of browser performance degradation due to the unrecognized functions is considered
and a generalization technique called as Object Oriented JavaScript Generalization (O0JG) technique is introduced by
using related functions. The unrecognized functions are detected in JavaScript programs and they are replaced by a
related function to achieve efficient performance. The evaluation of the proposed O0JG technique is performed with
the use of three browsers namely Chrome, Internet Explorer and Firefox. The results show that the O0JG technique
can ensure the fair performance of the browsers.

The rest of the paper is organized as follows: Section 2 describes the related works. The proposed O0JG technique
is explained in section 3. The experimental results are given in section 4 while the conclusion of the research is
presented in section 5.

1 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

2. Related Works

In [4] Charles Reis et al suggested a solution for isolating the JavaScript web programs from the browser
architecture in order to reduce the robustness. The authors presented abstractions of web programs and program
instances to analyze the browser components interaction and appropriate program boundaries. Then the backwards
compatibility tradeoffs that constrain the web content can be divided into programs without disrupting existing web
sites. Finally a multi-process browser architecture that isolates the web program instances from each other is
introduced for improving fault tolerance, resource management, and performance of the browsers.

In [5] Leo A. Meyerovich et al proposed technique called Conscript for specifying and enforcing fine-grained
security policies for JavaScript programs in the browser. Conscript is a client-side advice implementation for security
built on top of Internet Explorer 8. It allows the hosting page to express fine-grained application-specific security
policies that are enforced at runtime. The approach introduces security aspects, continuous checking, police
generation and automatic evaluation to improve the JavaScript browser performance with high secured policies.

In [6] Adonis P.H. Fung et al presented HTTPS Lock for the enforcement of HTTPS protection in the unmodified
JavaScript browsers. The authors suggested HTTPS Lock can be deployed in websites with valid certificates by simply
including several HTML and JavaScript (JS) files. When a same URL is later revisited, the cached file resided on the
client-side can then enforce the use of HTTPS and forbid users to embrace any invalid certificates. When an active
attacker denies the service with an invalid certificate, HTTPS Lock skips the default warning and instead displays a
non-by-passable warning to the user. Thus the approach can improve the performance and security of the object
oriented JavaScript browsers.

In [7] Jan Kasper Martinsen et al presented a technique called Thread-level speculation (TLS) to improve the
JavaScript performance in the web applications and web browsers. Thread-level speculation (TLS) aims to
dynamically extract parallelism from a sequential program to improve the overall performance of the JavaScript files.
The drawback is the storage of the state of the JavaScript engine at the speculation point can increase the memory
overhead.

In [8] Reginald Cushing et al also presented a technique to improve the performance of JavaScript in the web and
mobile browser. The approach called Weevil Scout performs better in the web browsers and considerably in the
mobile browsers to improve the security of the JavaScript than maintaining its fair performance. The major drawback
is the unconvincing performance in mobile devices due to lack of power supply.

In [9] Calin Cascaval et al discussed about the need for concurrency in the mobile browsers. The JavaScript based
mobile browsers do not sufficiently allow parallel browsing or multiple tabs processing in separate process resources.
The major problem is the dominance of the JavaScript platforms. Most mobile browsers do not depend on CSS,
rendering and parse engines for the browser performance which reduces the ability for parallelism. The authors
suggested building browser architecture with integrated languages so that concurrency is achieved.

In [10] Javier Verdu et al presented Web workers APl for the evaluation of the performance scalability of the
JavaScript applications including web browsers. The classification of web apps according to the worker execution
models is performed to analyze the effective analysis of the performance scalability.

In our previous work [11] we presented a bug analysis approach using TSVM that helps in detecting the
vulnerabilities that hinder the efficient performance of object oriented JavaScript. In [12] Isatou Hydara et al
proposed an approach for removing the cross-site scripting vulnerabilities from the programming languages. In [13]
S. Mithun brindha et al presented a fuzzy based approach for prioritizing the security requirements in the
development of software applications and web applications using the programming languages.

3. Object oriented JavaScript generalization technique

The web browsers generally use JavaScript files as they provide user friendly environment. However with different
needs and different levels of user interface, there are many number of web browsers each providing its own version
of comfort browsing. Thus the web users are not confined to using a default browser. This scenario causes different
browsers with varying features used for the same function of web browsing. Here the problem of unrecognized
JavaScript function arises. Some of the JavaScript functions may not be supported by all the browsers due to the
browsers varying architecture and other characteristic features. The main idea suggested in this paper to resolve this
drawback is to use a generalization technique of modifying or replacing the unsupported functions.

Based on the suggested solution, Object Oriented JavaScript Generalization (O0JG) technique is introduced in this
paper to overcome the problem of unrecognized functions of the JavaScript files. In OOJG technique, the JavaScript

2 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382
HTML files are analyzed and the files are run in the browsers. When executing these HTML files, if all the functions
are supported the corresponding web page will be displayed by the browser. If the files contain unsupported
functions the browser will not display the web page and instead displays the error page showing that the object or
function is not supported by the specified browser.
In this research, the browsers namely Chrome, Internet Explorer and Firefox are utilized for the analysis of the
proposed O0JG technique. The features and functionalities of the three browsers are briefly studied [14] and then
the analysis of the unrecognized functions is performed.

3.1 Google Chrome

Google Chrome is developed by Google as a freeware web browser using Webkit layout engine and Webkit fork
Blink. It was initially released as a beta version of for Microsoft Windows. Chrome was assembled by using 25
different code libraries from Google and also from third parties such as Mozilla's Netscape Portable Runtime,
Network Security Services, NPAPI Skia Graphics Engine, SQLite, and many other open-source projects. The JavaScript
virtual machine is one of the important projects which are mostly utilized for the web applications such as Gmail for
faster processing. Chrome uses Blink rendering machine for displaying the web pages by using its own multi-process
architecture and also the web core components of the Webkit. The chrome coding has to pass the web kit layout
tests, fuzz tests and the automated user interface testing of scripted user actions.

Chrome has distinct features of minimalistic user interface and strong browser performance. Chrome allows
synchronization of bookmarks, history and history with an additional feature of signed-in updation. The web
standards such as JavaScript/ECMAscript are well supported by Chrome and also the security and privacy browsing
features of Chrome provide comfortable usage of the browser. The most important features of Chrome are the
stable and faster user interface architecture that provides highly upgraded applications to be performed effectively in
Chrome. Chrome is available for Windows, OS X, Linux, Android and iOS platforms.

Using O0JG technique in Chrome helps in detecting the unsupported JavaScript functions and then the
generalization of functions is performed. The unsupported

3.2. Internet Explorer

Internet Explorer (IE) was developed by Microsoft Windows as a series of graphical web browsers initially included
as a part of Microsoft Windows OS. IE used source code from Spyglass, Inc. Internet Explorer has been designed to
view a broad range of web pages and provide certain features within the operating system, including Microsoft
Update. Internet Explorer uses a componentized architecture built on the Component Object Model (COM)
technology. It consists of several major components, each of which is contained in a separate Dynamic-link library
(DLL) and exposes a set of COM programming interfaces hosted by the Internet Explorer main executable,
iexplore.exe. Pop-up blocking and tabbed browsing were the recent features added along with favicon feature. IE
supports HTML 4.01, HTML 5, CSS Level 1, Level 2 and Level 3, XML 1.0, and DOM Level 1, with minor implementation
gaps and completely supports XSLT 1.0 and WD-xsl. IE also uses a zone-based security framework that websites
based on certain conditions for user-editable and secured zones. Security restrictions are applied per zone and all the
sites in a zone are subject to the restrictions.

3.3. Firefox

Firefox has been developed by Mozilla foundation supported for Windows, Linux, OS X, Android and Firefox OS.
Features include tabbed browsing, spell checking, incremental find, live bookmarking, Smart Bookmarks, a download
manager, private browsing, and location-aware browsing based on a Google service. Firefox is an integrated search
system that uses Yahoo Search by default in most localization. Firefox also provides an environment for web
developers in which they can use built-in tools, such as the Error Console or the DOM Inspector, or extensions, such
as Firebug and more recently there has been an integration feature with Pocket. Firefox Hello was an implementation
allowing 2 users of Firefox to have a video call, with the extra feature of screen/file sharing, by sending a link to each
other.

Functions can be added through add-ons created by third-party developers. Add-ons are primarily implemented
by means of the XUL and XPCOM APIs, which allow them to directly access and manipulate much of the browser's
internal functionality. The new versions of Firefox for mobiles also includes the Awesome bar, Add-on support,
password manager and the ability to synchronize with the user's computer Firefox browser using Firefox Sync.

3 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

3.4 Algorithm: 00JG Technique

Input: JavaScript files with specified functions

Output: Unsupported JavaScript functions and Fair Browser performance

Step 1: Initialize input files with functions

//Event function, indexof function, onfocus function, tosource function, trim functions

Browsers = Chrome, Internet Explorer, Firefox

Step 2: Run each file in each Browser

If (Successful execution)

File has no unsupported functions

Else if

Object is not supported

//File has unsupported functions

End if

Step 3: Initialize O0JG technique

Find unsupported function ()

Use alternate function ()

Step 4: Re-run the file with unsupported function ()

If (Successful execution)

File has no unsupported functions

Else if

Go to step 3

End if

End

3.5. Description: The JavaScript files are initialized and the set of browsers to be utilized are considered. Each file is
run individually on each browser. If the file is executed successfully, then the file is completely supported. But if the
execution is not successful then there are some unsupported functions in the executed file. At this case, the 00JG
technique is initialized to find the unsupported functions and then they are replaced by alternate coding functions.
Then the modified coding is again run on individual browsers to determine the effectiveness of the new functions.
Thus the O0JG can provide fair performance of the JavaScript browsers.

The implementation of the proposed OO0JG technique initially analyzes the browsers for the JavaScript HTML
support and then analyzes the JavaScript files. Then the files are run on the browsers and the functions that are not
supported by the browsers are identified. Then the possible solutions for executing the unsupported functions are
carried out. In this research the replacement of unsupported functions by a related function is used as the possible
strategy for executing the unsupported functions. This strategy results in the successful execution of the files and
leads to the corresponding web pages. Thus the proposed O0JG technique can provide efficient execution of the files
with unsupported functions to achieve better performance.

4. Experimental Results

The experiments are performed by executing some of the JavaScript HTML files in the selected browsers namely

Chrome, Internet Explorer and Firefox. From the results, the unsupported functions of the JavaScript files are
identified. Then the related functions are implemented to replace the unrecognized functions inorder to execute the
JavaScript files.
In this research, inorder to evaluate the performance of the proposed O0JG technique, five JavaScript files containing
functions namely event function, indexof function, onfocus function, tosource function and trim functions are
considered. These functions are executed in the three browsers to analyze which of the functions are not supported
in each browser. Then based on the analysis results the suitable functions are used instead of the unsupported
functions.

4.1. Event function

The file containing the event function is executed on the three browsers. The addEventListener () function is
executed successfully in the chrome and Firefox but it is found not supportable in IE.

4 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016

Figure.1. Unsupported coding of event function

Bevwser Unsupponed Codasg -
REND £
- J DOCTYTE hd
kel
hody
2 Tl wsanmple v (e adBEvort Lammes O sethod 1o e h 2 clek svon
HOEHERRE L& M T SRR A ———
o Noto: srong® The addBventl stenes) method L oot supgone
= "drmno™ <p
T It
Socuyent oddEvens Listeser { ek, Ruusond)|
S damwnnt gt Edersseet By T B) s FITMIL, = Fulks Wkl
M
aept
'
ke

s T

ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Figure 1 shows the unsupported coding of the JavaScript HTML file containing the event function in the IE
browser. From the figure, it is clear that the event function (addEventListener ()) is not supported in the IE.

Figure.2. Output of event function file

DGRt o Windres et o

e 0= e Fpwdes Dow e

Faoriee D Upsanmr gt Sront iwoerrt bued

Thes exaple wses the adEvemliens() matod 10 anach o chek evers oo the document

Click arrwhers in the docmnent

Note: The addEventlistener() method 3 not supported n Intemet Explorer § md epcler version:

||
® [u’

Hence the O0JG technique uses the replacement strategy by using a function called onclick to execute the file in
place of event function. Figure 2 shows the output of the event function. Then by using the onclick function, the
desired performance of event function file that was achieved in Chrome and Firefox can be achieved. The modified

coding is shown in Figure 3.

www.iseeadyar.org

ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016

Figure.3. Modified coding with replaced function

Converted Coding

Tl

READ | SDOCIYPE haml
<heml®
shody™

<p>Click th button to wigger & functon that wll catpae “Hello Wodld' in 2

SENERAUTE shutton onebck="myFunctioal)™ Click me ~burton>

sp ="demo™ Jps ~

<scnpr>
function myFunction() {

EXIT document @t Bomoat By Id{ demo”) s FETML = Hello Woddd"
)
~Sampt>
shody

<homd» v
I oL ey e

The final output of the event function JavaScript file with the replaced onclick function is shown in figure 4.

Figure.4. Final Output

vty X L Bl

Cick e bution 1o Tigper a fmcson that wil outpet "Hello Wordd” in a p element widh 334" demo”

| Shokms

Helo World

4.2. Indexof function
The file containing the indexof function is executed on the three browsers. The indexof () function is executed

successfully in the chrome and Firefox but it is found not supportable in IE. So the function has to be replaced.

6 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016

Figure.5. Unsupported coding of indexof function

READ

CENERNDE

ot

=] 3
L
D »,
Browwr Liowipportod Coding r
DOCTYTFE hid
~hitul~
body
<p>Clieck the batton 10 display e position of the elemenr “Agiple < p>
Buttoon onclich oy Fanctiond)™ Tey 2 <tnon
& Wldemo™ upr
ol ™
P tions oy Frncnionl)
var Bruits = [Bomsa”, "Orange”, Agple”, Mg

var = Euits asdexOIT Apple)

document getilementByld demo? mnerEHTTMML = a }

| [

Ve v
T

-4

ISSN (online) : 22

77-5390

ISSN (Print): 2277 - 5382

Figure 5 shows the unsupported coding of the JavaScript HTML file containing the indexof function in the IE browser.
From the figure, it is clear that the indexof function is not supported in the IE.

8 | T Javascrot Fou
S 2 0p Favertss oo
i Tooim B D iymoeiroutnoes el

Figure.6. Output of indexof function

w b 4w

|

v B
B~

Click the butioe to dsplay the poation of the demen "Apple”

Note: The ndesOf method was serodeced o1 JnvaScegpe | 6, and does not work is [terset Explocer § and earkier versions

Hence the O0JG technique uses the replacement strategy by using separate function coding to execute the file.

Figure 6 shows the output of the indexof function. Then the desired performance of indexof function file that was
achieved in Chrome and Firefox can be achieved. The modified coding with the replaced coding is shown in figure 7.

www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Figure.7. Modified coding with replaced function coding

Coaverted Codug 3
READ |
<DOCTYTE litond
<t
by
- <p>Click the button o dizplay the poation of the element "Apple” </
GENERALIZE & p
<hutton oackek="myFunctiond)™ Try < buon®
<p w="dema™ < p>
Sscnipt® h
functon mvFuncoond) {
ear var fruits = [Banama”, "Craoge”, "Apple”, Mango'
vor 2 =~ find_index(fruts "Apple"),
document. gt ElementByld demo’} innec HTML = a
)
fimction find_ndex(anay, string { .
Tal = > e

The final output of the indexof function JavaScript file with the replaced function coding is shown in figure 8.

Figure.8. Final output of Modified coding

wl bs X - Mo

Click the bution to display the position of the demers “Apple”

l Toid

Note: The ndexOf method was srodeced m JavaSapt 1 6, snd does not work i [nferaet Explocer § and earhier versions

4.3 Onfocus function

The file containing the onfocus function is executed on the three browsers. The onfocus function is executed
successfully in the chrome and IE but it is found not supportable in Firefox. So the function has to be replaced.

8 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Figure.9. Unsupported coding of onfocus function

K
DOCTYPE hitanl .
i hemnl® P
| D body>
Entec youn mume: <aspat typeYout” ik Towene ™ onfiocvooast oy Functiond™
p>\When vou leave the miput fiehd. a fncton 12 sggeyed which tonsdoms
| GENERNDE sp> ~smong” Noes wstiong” Faefox does not support the onfocusous et
st
fisction myFuctoul) |
v x = docmpent getElemen By Ll Taene)
wvaline = < vlue tollpperCasol)
}
B Vsnpe:
By
Tand
-
v
ok 7 .

Figure 9 shows the unsupported coding of the JavaScript HTML file containing the onfocus function in the Firefox
browser. From the figure, it is clear that the onfocus function is not supported in the Firefox.

Figure.10. Output of onfocus function

4 Miete Desakopt Iga it el ac Y QO 4 & -0 =

Ereer o sagie 300
When pou leave the eput Geld, 4 Ssetion o tnggered which tragsforms e g 1231 % pper (aie

ot Forefor dees pot suppeet the sefocusout evect

Hence the O0JG technique uses the replacement strategy by using onblur function to execute the JavaScript file.
Figure 10 shows the output of the onfocus function. Then the desired performance of onfocus function file that was
achieved in Chrome and IE can be achieved in Firefox. The modified coding with onblur function is shown in figure 11.

Figure.11. Modified coding with replaced onblur function

9 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

<DOCTYPE heml> 1
READ | <hitand>
— “body>

Entor your ssame: <input type="text” id="Toouse ™ onblu="tmyF unction()™

——— <p>When you leave the gt Beld, o fimction 15 tnggered wlhich oo
GENERALIZE

~p> ssrong® Note </srong” Fuefox does not suppost the onblur event </p*
Scnpty
funcuon myFunctiond) {
var x =~ document. getElement Byld{ ame)
wvahee = Lo olpperCase()
EXT }
<scrpt>
Shody™> J
hitend> v
LS - T

The final output of the onfocus function JavaScript file with the replaced onblur function is shown in figure 12.

Figure.12. Final output with modified coding

Fim ez s tfonfoas bl ¥

4 MV eemcrot Outpeklordaces xd B ¢|Ax 8 9 4 8 @. O =

Enter por same; 4344
When yoa leave the spat B, 2 Smchon i inggered whach tranforms the apud test o upper cave

[Nete: Furfox does oot suppeet the cohhr evest

4.4 Tosource function

The file containing the tosource function is executed on the three browsers. The tosource function is executed
successfully in the Firefox and IE but it is found not supportable in Google Chrome. So the function has to be replaced
by a related coding.

10 www.iseeadyar.org

ISSN (online) : 2277-5390

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016
ISSN (Print): 2277 - 5382

Figure 13. Coding of tosource function

Y DOCIYTE hund
READ itk
“body

s
fAnxtion emplovee(suane jobtatle bom)
{

OENERALE e =mname
S thas jobtitke=jobtitle

thas boroborm

}

v frod=new employee! Frod Flawsone ™, Cweman”, 1970)
document write (fred toSomcel))
“acript>

“hody ‘]

Sl
-

«\ &

Figure 13 shows the unsupported coding of the JavaScript HTML file containing the tosource function in the Chrome
browser. From the figure, it is clear that the tosource function is not supported in the Chrome.

Figure.14. Output of tosource function

cCnh Fliec /O dvascript input tosocrce Himl

o
- =1

° o

Hence the O0JG technique uses the replacement strategy by using JSON.stringify function to execute the JavaScript
file. Figure 14 shows the output of the tosource function.

Then the desired performance of tosource function file that was achieved in Firefox and IE can be achieved in
Chrome. Figure 15 shows the modified coding with replacement for tosource.

The final output of the tosource function JavaScript file in Chrome with the replaced JSON.stringify function is shown

in figure 16.

11 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016

Figure.15. Modified coding with replaced JSON.stringify function

ExT

KTOHE
Jody™

ripr
functioa employee nagme gobtsthe horn)

this ousner-1oune
s jobttle - yobute
this bonr-bom,

)

var fred=new employes (Fred Flneztone ™ Cavesman” 1970)
var fed=]SON strmgfyifred);

doctument . wire (fed);

sope®

<~body>
it

g

-\ - -

a7

I S
cCH

"nanee® Frad Flagsteas", ottds* "Cavemas’ o’ 1770}

Figure.16. Final output with Modified coding

ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Ces——————————— 0

file /)0 PavasriptOuput tosource rtm|

4.5 Trim function

The file containing the trim function is executed on the three browsers. The trim function is executed successfully in
the Chrome and Firefox but it is found not supportable in IE. So the function has to be replaced by a related coding.

Figure.17. Unsupported coding of trim function

12

www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016

GENERALIE |

READ

T AN
ap > Thck thee Dastion 1o adert the stnng with removed wlhitespace, < pS
St cacke b myFuncon (™ Try g</bunea>

sp> <styoag® Note </ strong® The tand) method s not suppeated m Lnteret
~xript>

function my Trandy) |

yorum x roplwol/”

)

o+ |+ on)

fancton myFuncbon({
v sy~ Hello Wald
alertistr ()

)

<Snpt>

<hody™
<ol

« v 4 T

fi)l

T

<\ S

ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Figure 17 shows the unsupported coding of the JavaScript HTML file containing the trim function in the IE browser.
From the figure, it is clear that the trim function is not supported in the IE.

(8 1 Savascriotingutitrim Wit - Windses nternet Legiorer

B s pt Ut b

M S0 Sew Paarter Toee teb

Favortes B o Ussmmrriroct i b

Tivd

Click foe bunon 1o alert the stiing wth yemored whiespace

Figurel8. Output of trim function

Note: The () mefiod s 0o spponed i lreemet Explorer § md sher vesvicas

il
v A
g

Hence the O0JG technique uses the replacement strategy by using replace function to execute the JavaScript file.
Figure 18 shows the output of the trim function.

The desired performance of trim function file that was achieved in Chrome and Firefox can be achieved in IE by
modifying the coding. Figure 19 shows the modified coding with the replace function.

13

www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Figure.19. Modified coding with Replace function

<hutton onchck="myF uncton(f™ Ty t<button’ .
| READ sp>~strong® Note:</strong” The trun() method 1= not supported m Internet

serpt™

function my Tomdx) {

retum xyephce{\s+| s+ $gn.”)

GENERALIZE |
hisction myFuncton() {
i i Hello Waald!
alert{str replace "
}
npe
e “hody®
himl»
]
v
« > 4 e

The final output of the trim function JavaScript file in Chrome with the modified coding is shown in figure 20.

Figure.20. Final output of Modified coding

(Mesmge from webpage \

! E Hello World!

4.6. Performance Comparison

The result for the proposed Generalization technique is initialized by considering the number of functions in
the Java script used in the browser. Let us consider the total number of functions be 50. The result comparison is
concerned with the percentage of the java script function supported before generalization is applied and after
generalization technique is applied. Consider the browsers Internet Explorer, Google Chrome and Firefox. Each
browser is considered for the improvement in the number of function support after Generalization.

The percentage of function support is calculated as

No. of functions supported

% Function S t = x 100
0 Function Suppor Total No of functions used

14 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

Figure 21. Function Support Comparison

100
90
80
70
60
50
40
30
20
10

M Before
Generalization

| After
Generalization

Internet Google Fire fox
Explorer Chrome

Function Support (%)

The total number of functions considered is 50, in Internet Explorer the number of functions supported before
generalization is 26, and after generalization is 42. Thus the percentage of function support before generalization is
52 % and after generalization the percentage is improved to 84%. From the figure 21, it is clear that the
generalization technique has improved the percentage to a greater extent. Thus the proposed generalization
technique makes a unrecognized function in the object oriented java script to be supported in the browser execution
and increase its performance efficiency.

5. Conclusion

Object oriented JavaScript Generalization technique has been introduced to maintain the fair performance of the
browsers for the common JavaScript files irrespective of the varying features of the browsers. The proposed 00JG
technique uses the replacement strategy of modifying the existing JavaScript coding by using related functions
instead of the unsupported functions. This approach of O0JG achieves fair performance of the browsers even when
not supporting certain functions. Thus the problem of unrecognized or unsupported functions in the web browsers
can be effectively resolved with the O0JG technique.

6. References

[1] Gregor Richards, Sylvain Lebresne, Brian Burg, Jan Vitek. An analysis of the dynamic behavior of JavaScript
programs. In ACM Sigplan Notices. 2010; 45(6), 1-12.

[2] Mark McGranaghan. Clojurescript: Functional programming for javascript platforms. [EEE Internet
Computing. 2011; 6, 97-102.

[3] Francisco J. Garcia-lzquierdo, Raul Izquierdo. Is the browser the side for templating?. Internet Computing, IEEE.
2012; 16(1), 61-68.

[4] Charles Reis, Steven D. Gribble. Isolating web programs in modern browser architectures. In Proceedings of the
4th ACM European conference on Computer systems, 2009; 219-232.

[5] Leo Meyerovich, Benjamin Livshits. ConScript: Specifying and enforcing fine-grained security policies for
Javascript in the browser. In 2010 IEEE Symposium on Security and Privacy (SP). 2010; 481-496.

[6] Adonis PH Fung, K. W. Cheung. HTTPS Lock: Enforcing HTTPS in unmodified browsers with cached JavaScript.
In 2010 4th International Conference on Network and System Security (NSS). 2010; 269-274.

[7]1 Jan Kasper Martinsen, Hakan Grahn, Anders Isberg. Using speculation to enhance javascript performance in web
applications. Internet Computing, /EEE. 2013; 17(2), 10-19.

[8] Reginald Cushing, Ganeshwara Herawan Hananda Putra, Spiros Koulouzis, Adam Belloum, Marian Bubak, Cees
De Laat. Distributed computing on an ensemble of browsers. Internet Computing, /EEE. 2013; 17(5), 54-61.

15 www.iseeadyar.org

Indian Journal of Innovations and Developments Vol 5 (4), April, 2016 ISSN (online) : 2277-5390
ISSN (Print): 2277 - 5382

[9] Calin Cascaval, Pablo Montesinos Ortego, Behnam Robatmili, Dario Suarez Gracia. Concurrency in mobile
browser engines. Pervasive Computing, IEEE. 2015; 14(3), 14-19.

[10] Javier Verdu, Alex Pajuelo. Performance scalability analysis of javascript applications with web workers. IEEE
Computer Architecture Letters, 2015; PP(99), 1.

[11] F. Fawzia Khan, R. Mallika. Analysis of various types of bugs in the object oriented java script language
coding. Indian Journal of Science and Technology. 2015; 8(21), 1-9.

[12] Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro. Removing cross-site scripting
vulnerabilities from web applications using the OWASP ESAPI Security Guidelines. Indian Journal of Science and
Technology. 2015; 8(30), 1-5.

[13] S. Mithun brindha, Dr.G. Singaravel. Fuzzy interference approach based prioritization of security requirements.
Indian Journal of Innovations and Developments. 2014; 3(4), 80-84.

[14] Wikipedia-https://en.wikipedia.org/

The Publication fee is defrayed by Indian Society for Education and Environment (iSee). www.iseeadyar.org

Citation:

F. Fawzia Khan, K.Thilagam. Object oriented javascript generalization technique. Indian Journal of Innovations and Developments. 2016; 5 (4),
April.

16 www.iseeadyar.org

