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Abstract

The most common use for neural networks is to project what will most likely happen. There are many applications where
prediction can help in setting priorities. Know who needs the most time critical help can enable a more successful operation.
Basically, all organizations must establish priorities which govern the allocation of their resources. This projection of the future
is what drove the creation of networks of prediction. In our study, we was examined the machine learning based pattern
recognition for chemical spectral data.
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Introduction multiple-layered, feed-forward neural networks
such as Back propagation networks, and evolution-
based genetic algorithms. Many information
science researchers have started to experiment with
these techniques as well (Gail et al., 1991).

Machine learning is a burgeoning new
technology with a wide range of applications. It has
the potential to become one of the key components
of intelligent information systems, enabling
compact generalizations, inferred from large Machine learning approaches
databases of recorded information, to be applied as Learning is an inherent characteristic of the

knowledge in various practical ways such as being  pman beings. By virtue of this, people, while
embedded in automatic processes like expert executing similar tasks, acquire the ability to
systems, or used directly for communicating with improve their performance. This chapter provides
human experts and for educational purposes. In  gp gverview of the principle of learning that can be

contrast to performance systems which acquire  ,ghered to machines to improve their performance.
knowledge from human experts, machine learning  gych learning is usually referred to as machine
systems acquire knowledge automatically from learning. Machine learning can be broadly
examples, i.e., from source data. It is commonly  (|assified into three categories: 1) supervised
used in classification tasks (recognizing objects, learning ii) Unsupervised learning and iii)
understandit}g situations, predicting future data, Reinforcement learning.  Supervised learning
etc.,) and in expert systems (for example for requires a trainer, who supplies the input-output
Fiiagnosis). A commer(':iallhy apd scientiﬁcglly training instances. The learning system adapts its
important area of application is Data Mining, parameters by some algorithms to generate the
where such algorithms are used to detect relevant  jagired output patterns from a given input pattern.
information and patterns in large databases. The [, absence of trainers, the desired output for a
most frequently used techniques include symbolic, given input instance is not known, and

inductive learning  algorithms  such as ID3,  congequently the learner has to adapt to its
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parameters autonomously. Such type of learning is
termed unsupervised learning. The third type called
the reinforcement learning bridges a gap between
supervised and unsupervised categories. In
reinforcement learning, the learner does not
explicitly know the input-output instances, but it
receives some form of feedback from its
environment. The feedback signals help the learner
to decide whether its action on the environment is
rewarding or punishable. The learner thus adapts its
parameters based on the states (rewarding /
punishable) of its actions. Among the supervised
learning techniques, the most common are
inductive and analogical learning. The inductive
learning technique, presented in the chapter,
includes decision tree and version space based
learning. Analogical learning is briefly introduced
through illustrative examples. The principle of
unsupervised learning 1is illustrated here with a
clustering problem. The section on reinforcement
learning includes Q-learning and temporal
difference learning. A fourth category of learning,
which has emerged recently from the disciplines of
knowledge engineering, is called inductive logic
programming. The principles of inductive logic
programming have also been briefly introduced in
this research. The research ends with a brief
discussion on the computational theory of learning.
With the background of this theory, one can
measure the performance of the learning behavior
of a machine from the training instances and their
count. For example, Hopfield networks have been
used extensively in the area of global optimization
and search; Kohonen networks have been adopted
in unsupervised learning and pattern recognition.
The other important machine algorithms are
support vector machines, genetic algorithms and
fuzzy logic. Other important related algorithms are
Hidden Markov model and Markov Chain Monte
Carlo (Herrero et al., 2001).

Artificial neural network

The foundation of the neural networks paradigm
was laid in the 1950s and this approach has
attracted significant attention in the past decade due
to the development of more powerful hardware and
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neural algorithms. Nearly all connectionist
algorithms have a strong learning component.
Learning algorithms can be applied to adjust
connection weights so that the network can predict
or classify unknown examples correctly. Most
research effort is directed towards the invention of
new algorithms for learning (Swarm optimization),
rather than towards gaining experience in applying
existing techniques to real problems. Neural
networks have been adopted in various
engineering, business, military, and biomedical
domains. Among these artificial neural networks
have had a number of successful applications in
biology such as pattern recognition in DNA and
proteins, protein structure prediction, analysis and
clustering of gene expression data, modeling gene
network. An artificial neural network may be
described as a set of neurons or nodes Xi, each
transforming its total or net input x ini into an
output or activity xi according to an activation

outputs 1 !

Fig.1. Basic model of a network

function (or transfer function) f(x_ini). Each node
Xi sends its output to other units Xj through
connections each having a certain effectiveness or
weight wij. The net input to any unit Xj is usually
modeled as a sum of all the outputs xi from other
units (and, in recurrent nets, from itself), weighted
by the weights wij of the respective connections. In
a neural network model, simple nodes (called
neurons) are connected together to form a network
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of nodes - hence the term "neural network" (Fig.1).
While a neural network does not have to be
adaptive per se, its practical use comes with
algorithms designed to alter the strength (weights)
of the connections in the network to produce a
desired signal flow (Selaru et al., 2002).

The brain is principally composed of about 10
billion neurons; each connected to about 10,000
other neurons. Each of the yellow blobs in the
picture above is neuronal cell bodies (soma), and
the lines are the input and output channels
(dendrites and axons) which connect them. Each
neuron receives electrochemical inputs from other
neurons at the dendrites. If the sum of these
electrical inputs is sufficiently powerful to activate
the neuron, it transmits an electrochemical signal
along the axon, and passes this signal to the other
neurons whose dendrites are attached at any of the
axon terminals. These attached neurons may then
fire.

It is important to note that a neuron fires only if
the total signal received at the cell body exceeds a
certain level. The neuron either fires or it does not,
if there are no different grades of firing. So, our
entire brain is composed of these interconnected
electro-chemical transmitting neurons. From a
very large number of extremely simple processing
units (each performing a weighted sum of its
inputs, and then firing a binary signal if the total
input exceeds a certain level) the brain manages to
perform extremely complex tasks. This is the
model on which artificial neural networks are
based. Thus far, artificial neural networks haven't
even come close to modeling the complexity of the
brain, but they have shown to be good at problems
which are easy for a human but difficult for a
traditional computer, such as image recognition and
predictions based on past knowledge.

Biological neurons

Neurons are body cells specialized for signal
transmission and signal processing. Fig.2 shows the
typical structural characteristics of a neuron. It has
a cell body (or soma) and root-like extensions
called neuritis. Amongst the neuritis, one major
outgoing trunk is the axon, and the others are
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dendrites. The signal processing capabilities of a
neuron is its ability to vary its intrinsic electrical
potential (membrane potential) through special
electro-physical and chemical processes. A single
neuron receives signals from many other neurons,
(typically in order of 10,000 for mammals) at
specialized sites on the cell body or on the
dendrites, known as synapses. Synapses receive
signals from a pre-synaptic neuron and alter the
state of the postsynaptic neuron (the receiver
neuron) and eventually trigger the generation of an
electric pulse, the action potential (a spike), in the
postsynaptic neuron. This action potential is
initiated at the rooting region of the axon, the axon-
hillock, and it subsequently travels along the axon
sending information signal to the other parts of the
nervous system.

Among the numerous artificial neural networks
which have been proposed recently, Back
propagation networks have been extremely popular
for their wunique learning capability. Back
propagation networks are fully connected, layered,
feed-forward models. Activations flow from the
input layer through the hidden layer, then to the
output layer. A Back propagation network typically
starts out with a random set of weights. The
network adjusts its weights each time it sees an
input-output pair. Each pair is processed at two
stages, a forward pass and a backward pass. The
forward pass involves presenting a sample input to
the network and letting activations flow until they
reach the output layer. During the backward pass,
the network's actual output is compared with the
target output and error estimates are computed for
the output units. The weights connected to the
output units are adjusted in order to reduce the
errors (a gradient descent method). The error
estimates of the output units are then used to derive
error estimates for the units in the hidden layer.
Finally, errors are propagated back to the
connections stemming from the input units. The
Back propagation network updates its weights
incrementally until the network stabilizes.

Feed forward neural network
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Fig.2. Diagram of generic neuron

A feed forward neural network is an artificial
neural network where connections between the
units do not form a directed cycle. This is different
from recurrent neural networks. The feed forward
neural network was the first and arguably simplest
type of artificial neural network devised. A feed
forward neural network is a biologically inspired
classification algorithm. It consists of a (possibly
large) number of simple neuron-like processing
units, organized in layers. Every unit in a layer is
connected with all the units in the previous
layer. These connections are not all equal; each
connection may have a different strength or
weight. The weights on these connections
encode the knowledge of a network. Often the
units in a neural network are also called nodes.
Data enters at the inputs and passes through the
network, layer by layer, until it arrives at the
outputs. During normal operation, that is when it
acts as a classifier, there is no feedback between
layers. This is why they are called feed forward
neural networks (Fig.3).
Feed-forward networks
characteristics:

1. Perceptrons are arranged in layers, with the first
layer taking in inputs and the last layer
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producing outputs. The middle layers have no
connection with the external world, and hence
are called hidden layers.

Each perceptron in one layer is connected to
every perceptron on the next layer. Hence
information is constantly fed forward from one
layer to the next, and this explains why these
networks are called feed-forward networks.
There is no connection among perceptrons in
the same layer.

Hickdzn layers

Layer4
Cutput layer

Layer(
Input layer

Fig.3. A feed-forward neural networks

FFNN Phases

During the learning phase the weights in the FF
Net will be modified. All weights are modified in
such a way that when a pattern is presented, the
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output unit with the correct category, hopefully,
will have the largest output value. In the
classification phase the weights of the network are
fixed. A pattern, presented at the inputs, will be
transformed from layer to layer until it reaches the
output layer (Fig.4). Now classification can occur
by selecting the category associated with the output
unit that has the largest output value. The
traditional  two-phase  approach to  FNN
development. Phase I consist of the following
procedures:

1) Determining dependent  variable and
independent variables for the problem.
2) Collecting data according to specified

dependent and independent variables

3) Identifying significant independent variables
using multivariate analysis method (e.g.,
multiple linear regression)

4) Separating data into two sets namely training
data set and validation data set.

5) Determining set of FNNs
architectures.

with different

1

" 5
S N
: ‘20/

Fig.4. A network showing input vectors,
weight vector and activation function

Phase II consists of the following procedures:

1. Training each FNN using training data set, and
choosing  FNN with highest percentage of
correction classification.

2. Validating the chosen FNN using validation data
set.

Supervised learning

The FF net uses a supervised learning algorithm;
besides the input pattern, the neural net also needs
to know to what category the pattern belongs.

Research article
©Indian Society for Education and Environment (iSee)

“Pattern recognition for chemical spectral data”
http://iseeadyar.orgfijid.htm

Learning proceeds as follows: a pattern is presented
at the inputs. The pattern will be transformed in its
passage through the layers of the network until it
reaches the output layer. The units in the output
layer all belong to a different category. The outputs
of the network as they are now are compared with
the outputs as they ideally would have been if this
pattern were correctly classified: in the latter case
the unit with the correct category would have had
the largest output value and the output values of the
other output units would have been very small. On
the basis of this comparison all the connection
weights are modified a little bit to guarantee that,
the next time this same pattern is presented at the
inputs, the value of the output unit that corresponds
with the correct category is a little bit higher than it
is now and that, at the same time, the output values
of all the other incorrect outputs are a little bit
lower than they are now. The differences between
the actual outputs and the idealized outputs are
propagated back from the top layer to lower layers
to be used at these layers to modify connection
weights. This is why the term back propagation
network is also often used to describe this type of
neural network.

Mathematically the functionality of a hidden
neuron is described by Eqn.(3.1)

c= % WX, +b,
=1
(3.1)

where the weights J b; are symbolized with the
arrows feeding into the neuron. The network output
is formed by another weighted summation of the
outputs of the neurons in the hidden layer. This
summation on the output is called the output layer.
In Fig.4 there is only one output in the output layer
since it is a single-output problem. Generally, the
number of output neurons equals the number of
outputs of the approximation problem. The neurons
in the hidden layer of the network in Fig.3 are
similar in structure to those of the perception, with
the exception that their activation functions can be
any differential function. The output of this
network is given by Eqn.(3.2).
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y®)=g(0,x)=Y Wio| X WX +b.. [+b
i=1 i=1
(3.2)
where n is the number of inputs and nh is the
number of neurons in the hidden layer. The
1 1
variables WU, le, Vi ,b2 are the parameters of
the network model that are represented collectively
by the parameter vector 9. In general, the neural
network model will be represented by the compact

notation g( 9 ,x) whenever the exact structure of the
neural network is not necessary in the context of a
discussion.

Note that the size of the input and output layers are
defined by the number of inputs and outputs of the
network and, therefore, only the number of hidden
neurons has to be specified when the network is
defined. The network in Fig.l is sometimes
referred to as a three-layer network, counting input,
hidden, and output layers. However, since no
processing takes place in the input layer, it is also
sometimes called a two layer network. In training
the network, 1its parameters are adjusted
incrementally until the training data satisfy the
desired mapping as well as possible; that is, until

Y (9) matches the desired output y as closely as
possible up to a maximum number of iterations.
The nonlinear activation function in the neuron is
usually chosen to be a smooth step function. The
default is the standard sigmoid by Eqn.(3.3).

1

—X

+e (3.3)
Back propagation algorithm

sigmoid[x] =

Back propagation, or propagation of error, is a
common method of teaching artificial neural
networks how to perform a given task. It was first
described by Werbos in 1974, but it wasn't until
1986, through the work of Rumelhart, et al., that it
gained recognition, and it led to a renaissance in
the field of artificial neural network research. It is a
supervised learning method, and is an
implementation of the Delta rule. It can calculate
the desired output for any given input. It is most

Research article
©Indian Society for Education and Environment (iSee)

“Pattern recognition for chemical spectral data”
http://iseeadyar.orgfijid.htm

useful for  feed-forward networks (networks that
have no feedback, or simply, that have no
connections that loop). The term is an abbreviation
for backwards propagation of errors. Back
propagation requires that the activation function
used by the artificial neurons is differentiable.

The algorithm of the back propagation technique is
as follows:

e Present a training sample to the neural network.

e Compare the network’s output to the  desired
output from that sample. Calculate the error in
each output neuron.

e For each neuron, calculate what the output
should have been, and a scaling factor, how
much lower or higher the output must be
adjusted to match the desired output. This is the
local error.

e Adjust the weights of each neuron to lower the
local error.

e Assign blame for the local error to neurons at
the previous level, giving greater responsibility
to neurons connected by stronger weights.

e Repeat from step 3 on the neurons at the
previous level, using each one’s blame as its
error.

As the algorithm’s name implies, the errors (and
therefore the learning) propagate backwards from
the output nodes to the inner nodes. So technically
speaking, back propagation is used to calculate the
gradient of the error of the network with respect to
the network’s modifiable weights. This gradient is
almost always then used in a simple stochastic
gradient descent algorithm to find weights that
minimize the error. Often the term back
propagation is used in a more general sense, to
refer to the entire procedure encompassing both the
calculation of the gradient and its use in stochastic
gradient descent. Back propagation usually allows
quick convergence on satisfactory local minima for
error in the kind of networks to which it is suited.

It is important to note that back propagation
networks are necessarily multilayer perceptions
(usually with one input, one hidden, and one output
layer). In order for the hidden layer to serve any
useful function, multilayer networks must have
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non-linear activation functions for the multiple
layers: a multilayer network using only linear
activation functions is equivalent to some single
layer, linear network. Non-linear activation
functions that are commonly used include the
logistic function, the soft max function, and the
Gaussian  functions. The back propagation
algorithm for calculating a gradient has been
rediscovered a number of times, and is a special
case of a more general technique called automatic
differentiation in the reverse accumulation mode.
Supervised patterns-network selection

Because all artificial neural networks are based
on the concept of neurons, connections, and
transfer functions, there is a similarity between the
different structures, or architectures, of neural
networks. The majority of the variations stems
from the various learning rules and how those rules
modify a network’s typical topology. The
following sections outline some of the most
common artificial neural networks. They are
organized in very rough categories of application.
These categories are not meant to be exclusive,
they are merely meant to separate out some of the
confusion over network architectures and their best
matches to specific applications. Basically, most
applications of neural networks fall into the
following five categories namely: 1) Prediction 2)
Classification 3) Data association 4) Data
conceptualization 5) Data filtering.

b %"*’i’ =

Hidden1

Fig.5. Feed forward Back-propagation Neural Network

The most common use for neural networks
is to project what will most likely happen. There
are many applications where prediction can help in
setting priorities. For example, the emergency
room at a hospital can be a hectic place. To know
who needs the most time critical help can enable a
more  successful operation. Basically, all
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organizations must establish priorities which
govern the allocation of their resources. This
projection of the future is what drove the creation
of networks of prediction (Yegnanarayana, 1994).

The feed forward, back-propagation
architecture was developed in the early 1970’s by
several independent sources. This independent co-
development was the result of a proliferation of
articles and talks at various conferences which
stimulated the entire industry. Currently, this
synergistically developed back-propagation
architecture is the most popular, effective, and easy
to learn model for complex, multi-layered
networks. This network is used more than all others
combined. It is used in many different types of
applications. This architecture has spawned a large
class of network types with many different
topologies and training methods. Its greatest
strength is in non-linear solutions to ill defined
problems. The typical back-propagation network
has an input layer, an output layer, and at least one
hidden layer. There is no theoretical limit on the
number of hidden layers but typically there is just
one or two. Some work has been done which
indicates that a maximum of four layers (three
hidden layers plus an output layer) are required to
solve problems of any complexity. Each layer is
fully connected to the succeeding layer, as shown
in Fig.5. The in and out layers indicate the flow of
information during recall. Recall is the process of
putting input data into a trained network and
receiving the answer. Back-propagation is not used
during recall, but only when the network is learning
a training set.

The number of layers and the number of
processing elements per layer are important
decisions. These parameters to a feed forward,
back-propagation topology are also the most
ethereal. They are the art of the network designer.
There is no quantifiable, best answer to the layout
of the network for any particular application. There
are only general rules picked up over time and
followed by most researchers and engineers
applying this architecture to their problems.

Rule One: As the complexity in the relationship
between the input data and the desired output
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increases, then the number of the processing
elements in the hidden layer should also increase.
Rule Two: If the process being modeled is
separable into multiple stages, then additional
hidden layer(s) may be required. If the process is
not separable into stages, then additional layers
may simply enable memorization and not a true
general solution.

Rule Three: The amount of training data
available sets an upper bound for the number of
processing elements in the hidden layer(s). To
calculate this upper bound, use the number of input
/ output pair examples in the training set and divide
that number by the total number of input and output
processing elements in the network. Then divide
that result again by a scaling factor between five
and ten. Larger scaling factors are used for
relatively noisy data. Extremely noisy data may
require a factor of twenty or even fifty, while very
clean input data with an exact relationship to the
output might drop the factor to around two. It is
important that the hidden layers have few
processing elements. Too many artificial neurons
and the training set will be memorized. If that
happens then no generalization of the data trends
will occur, making the network useless on new data
sets.

Once the above rules have been used to create a
network, the process of teaching begins. This
teaching process for a feed forward network
normally uses some variant of the Delta rule, which
starts with the calculated difference between the
actual outputs and the desired outputs. Using this
error, connection weights are increased in
proportion to the error times a scaling factor for
global accuracy. Doing this for an individual node
means that the inputs, the output, and the desired
output all have to be present at the same processing
element. The complex part of this learning
mechanism is for the system to determine which
input contributed the most to an incorrect output
and how does that element get changed to correct
the error. An inactive node would not contribute to
the error and would have no need to change its
weights. To solve this problem, training inputs are
applied to the input layer of the network, and

Research article
©Indian Society for Education and Environment (iSee)

“Pattern recognition for chemical spectral data”
http://iseeadyar.orgfijid.htm

desired outputs are compared at the output layer.
During the learning process, a forward sweep is
made through the network, and the output of each
element is computed layer by layer. The difference
between the output of the final layer and the
desired output is back-propagated to the previous
layer(s), usually modified by the derivative of the
transfer function, and the connection weights are
normally adjusted using the Delta Rule. This
process proceeds for the previous layer(s) until the
input layer is reached. There are many variations to
the learning rules for back-propagation networks.
Different error functions, transfer functions, and
even the modifying method of the derivative of the
transfer function can be used. The concept of
momentum error was introduced to allow for more
prompt learning while minimizing unstable
behavior. Here, the error function, or delta weight
equation, is modified so that a portion of the
previous delta weight is fed through to the current
delta weight. This acts, in engineering terms, as a
low-pass filter on the delta weight terms since
general trends are reinforced whereas oscillatory
behaviour is cancelled out. This allows a low,
normally slower, learning coefficient to be used,
but creates faster learning. Another technique that
has an effect on convergence speed is to only
update the weights after many pairs of inputs and
their desired outputs are presented to the network,
rather than after every presentation. This is referred
to as cumulative back-propagation because the
delta weights are not accumulated until the
complete set of pairs is presented. The number of
input-output pairs that are presented during the
accumulation is referred to as an epoch. This epoch
may correspond either to the complete set of
training pairs or to a subset.

There are limitations to the feed forward, back-
propagation architecture. Back-propagation
requires lots of supervised training, with lots of
input / output examples. Additionally, the internal
mapping procedures are not well understood, and
there is no guarantee that the system will converge
to an acceptable solution. At times, the learning
gets stuck in local minima, limiting the best
solution. This occurs when the network system
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finds an error that is lower than the surrounding
possibilities but does not finally get to the smallest
possible error. Many learning applications add a
term to the computations to bump or jog the
weights past shallow barriers and find the actual
minimum rather than a temporary error pocket.
Typical feed forward back-propagation
applications include speech synthesis from text,
robot arms, evaluation of bank loans, image
processing, knowledge representation, forecasting
and prediction, and multi-target tracking. Each
month more back-propagation solutions are
announced in the trade journals.

Higher-order neural network or functional-link
network

Either name is given to neural networks which
expand the standard feed forward, back-
propagation architecture to include nodes at the
input layer which provide the network with a more
complete understanding of the input. Basically, the
inputs are transformed in a well understood
mathematical way so that the network does not
have to learn some basic math functions. These
functions do enhance the network's understanding
of a given problem. These mathematical functions
transform the inputs via higher-order functions
such as squares, cubes, or sines. It is from the very
name of these functions, higher-order or
functionally linked mappings, that the two names
for this same concept were derived. This technique
has been shown to dramatically improve the
learning rates of some applications. An additional
advantage to this extension of back propagation is
that these higher order functions can be applied to
other derivations - delta bar delta, extended delta
bar delta, or any other enhanced feed forward,
back-propagation networks.

There are two basic ways of adding additional
input nodes. First, the cross-products of the input
terms can be added into the model. This is also
called the output product or tensor model, where
each component of the input pattern multiplies the
entire input pattern vector. A reasonable way to do
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this is to add all interaction terms between input
values. For example, for a back-propagation
network with three inputs (A, B and C), the cross-
products would include: AA, BB, CC, AB, AC, and
BC. This example adds second-order terms to the
input structure of the network. Third-order terms,
such as ABC, could also be added. The second
method for adding additional input nodes is the
functional expansion of the base inputs. Thus, a
back-propagation model with A, B and C might be
transformed into a higher-order neural network
model with inputs: A, B, C, Sin(A), Cos(B),
Log(C), Max(A,B,C), etc., In this model, input
variables are individually acted upon by
appropriate functions. Many different functions can
be used. The overall effect is to provide the
network with an enhanced representation of the
input. It is even possible to combine the tensor and
functional expansion models together. No new
information is added, but the representation of the
inputs is enhanced. Higher-order representation of
the input data can make the network easier to train.
The joint or functional activations become directly
available to the model. In some cases, a hidden
layer is no longer needed. However, there are
limitations to the network model. Many more input
nodes must be processed to use the transformations
of the original inputs. With higher-order systems,
the problem is exacerbated. Yet, because of the
finite processing time of computers, it is important
that the inputs are not expanded more than is
needed to get an accurate solution.

Radial basis function network

Radial basis function (RBF) networks have a
static Gaussian function as the nonlinearity for the
hidden layer processing elements. The Gaussian
function responds only to a small region of the
input space where the Gaussian is centered. The
key to a successful implementation of these
networks is to find suitable centers for the Gaussian
functions. This can be done with supervised
learning, but an unsupervised approach usually
produces better results.
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The simulation starts with the training of an
unsupervised layer. Its function is to derive the
Gaussian centers and the widths from the input
data. These centers are encoded within the weights
of the unsupervised layer using competitive
learning. During the unsupervised learning, the
widths of the Gaussians are computed based on the
centers of their neighbors. The output of this layer
is derived from the input data weighted by a
Gaussian mixture. Once the unsupervised layer has
completed its training, the supervised segment then
sets the centers of Gaussian functions (based on the
weights of the unsupervised layer) and determines
the width (standard deviation) of each Gaussian.
Any supervised topology (such as a MLP) may be

Fig.6. Radial Basis Function Network

used for the classification of the weighted input.
The advantage of the radial basis function network
is that it finds the input to output map using local
approximators. Usually the supervised segment is
simply a linear combination of the approximators.
Since linear combiners have few weights, these
networks train extremely fast and require fewer
training samples.

Radial basis networks may require more neurons
than standard feed-forward back propagation
networks, but often they can be designed in a
fraction of the time it takes to train standard feed-
forward networks. They work best when many
training vectors are available (Chen et al., 2005).
This chapter discusses two variants of radial basis
networks, Generalized Regression networks
(GRNN) and Probabilistic neural networks (PNN)
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construction of RBF network for tuberculosis
prediction.
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"l T N

W o W

L1 LR

P
I V
Ps @ I dist Il Ly N
¥ i !
r
L N | .

a = radbas( || w-p |l b)

Fig.7. Neuron Model with R inputs

A generalized regression neural network
(GRNN) is often used for function approximation.
It has been shown that, given a sufficient number
of hidden neurons, GRNNs can approximate a
continuous function to an arbitrary accuracy.
Probabilistic neural networks (PNN) can be used
for classification problems. Their design is
straightforward and does not depend on training.
A PNN is guaranteed to converge to a Bayesian
classifier providing it is given enough training
data. These networks generalize well. The GRNN
and PNN have many advantages, but they both
suffer from one major disadvantage. They are
slower to operate because they wuse more
computation than other kinds of networks to do

their function approximation or classification
(Fig.6 & 7).

Radial basis function (RBF) networks typically
have three layers: an input layer, a hidden layer
with a non-linear RBF activation function and a

linear output layer. The output, ® =R" >R of the
network is thus by Eqn. (3.4).

= ()= Zap(fx )

(3.4)
where N is the number of neurons in the hidden
layer, Ci is the center vector for neuron i, and ai are
the weights of the linear output neuron. In the basic
form all inputs are connected to each hidden
neuron. The norm is typically taken to be the
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Euclidean distance and the basis function is taken
to be Gaussian by Eqn. (3.5).

pllx—cl)=expl-lx—c )
(3.5
The Gaussian basis functions are local in the sense
that by Eqn. (3.6)
lim p(”x —-c; ||)= 0

<l
(3.6)
i.e., changing parameters of one neuron has only a
small effect for input values that are far away from
the center of that neuron.

RBF networks are universal approximators on a
compact subset of Rn. This means that a RBF
network with enough hidden neurons can
approximate any continuous function with arbitrary
precision. The weights ai, ci and B are determined
in a manner that optimizes the fit between ? and
the data (Vishal Gupta et al., 2009).

Normalized architecture

In addition to the above non-normalized
architecture, RBF networks can be normalized. In
this case the mapping is

d: 21111 aip("X =G ”)

X N e
AR P Yiau(x—ci)
(3.7)
“ p(x=ci
X —co )= PUATCID
u([x—c;|) S

where
1s known as a normalized radial basis function.

Training

In a RBF network, there are three types of
parameters that need to be chosen to adapt the
network for a particular task: the center vectors ci,
the output weights wi, and the RBF width
parameters Pi. In the sequential training of the
weights are updated at each time step as data
streams in. For some tasks it makes sense to define
an objective function and select the parameter
values that minimize its value. The most common
objective function is the least squares function
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def o

K(w) = t§11<t(\’~’)
(3.8)

def

where KOW) =[y(0)+ o(x(0). W)

We have explicitly included the dependence on the
weights. Minimization of the least squares
objective function by optimal choice of weights
optimizes accuracy of fit. There are occasions in
which multiple objectives, such as smoothness as
well as accuracy, must be optimized. In that case it
is useful to optimize a regularized objective
function such as

def def o
H(w) = K(w) +AS(w) = 2 H,(w)
t=1

(3.9
def oo
S(w) = 38, (W)
where t=1
def
and  HOD =K (W28, (w)

where optimization of S maximizes smoothness
and A is known as a regularization parameter.

Logistic regression

Logistic regression is a model used for
prediction of the probability of occurrence of an
event by fitting data to a logistic curve. It makes
use of several predictor variables that may be either
numerical or categories. For example, the
probability that a person has a heart attack within a
specified time period might be predicted from
knowledge of the person’s age, sex and body mass
index. Logistic regression is used extensively in the
medical and social sciences as well as marketing
applications such as prediction of a customer’s
capacity to purchase a product or cease a

subscription.  Logistic ~ regression  analyzes
binomially distributed data of the form
Y; ~B(n;,p;) ; for 1=1,...,m

(3.10)
Where the numbers of Bernoulli trials ni are known
and the probabilities of success pi are unknown. An
example of this distribution is the fraction of seeds
(p1) that germinate after ni are planted. The model
proposes for each trial (value of 1) there is a set of
explanatory variables that might inform the final
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probability. These explanatory variables can be
thought of as being in a k vector Xi and the model
then takes the form

Y

n;

(3.11)
The logits of the unknown binomial probabilities
(i.e., the logarithms of the odds) are modelled as a
linear function of the Xi.

X.

i =E
Pi i

log it(p,) = In[lfipi } =Bo tByXp et BX
(3.12)

Note that a particular element of Xi can be set to 1
for all 1 to yield an intercept in the model. The
unknown parameters Pj are usually estimated by
maximum likelihood. The interpretation of the fj
parameter estimates is as the additive effect on the
log odds ratio for a unit change in the jth
explanatory variable. In the case of a dichotomous
explanatory variable, for instance gender, ef is the
estimate of the odds ratio of having the outcome
for, say, males compared with females. The model
has an equivalent formulation

1

e_(BO+B1X1,i +"'+kak,i)

(3.13)

pi =
1+

This functional form is commonly called a single-
layer perceptron or single-layer artificial neural
network. A single-layer neural network computes a
continuous output instead of a step function. The
derivative of pi with respect to X = x1,...,xk is
computed from the general form:

1
T e ™)

(3.14)

Where f(X) is an analytic function in X. With this
choice, the single-layer network is identical to the
logistic regression model. This function has a
continuous derivative, which allows it to be used in
back propagation. This function is also preferred
because its derivative is easily calculated:

y
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df
y'=y(l-y)—

dx (3.15)
Unsupervised Neural methods

In the unsupervised learning, adjustment of
synaptic weights may be carried through the use of
neurobiological principles such as Hebbian
learning and competitive learning. In this section
we will describe specific applications of these two
approaches.

FUZZY artificial neural network

It may be mentioned that human reasoning is
somewhat fuzzy in nature. The utility of fuzzy set
(Kli and Folger 1989, Pal and Dutta Majumder
1986) lies in their ability to model the uncertain or
ambiguous data so often encountered in real life.
Hence, to enable a system to tackle real-life
situations in a manner more like humans, one may
incorporate the concept of fuzzy sets into the neural
network. It is to be noted that although fuzzy logic
is a natural mechanism for propagating uncertainty,
it may involve in some cases an increase in the
amount of computation. (compared with a system
using classical binary logic). This can be suitably
offset by using fuzzy neural network models
having the potential for parallel computation with
high flexibility. Fuzzy concepts have already been
incorporated into neural nets in control problems,
in  modeling output possibility distributions
(Ishibuchi and Tanaka 1990), in learning and
extrapolating complex relationships between
antecedents and consequents of rules, and in fuzzy
reasoning.

The fuzzy attempts to build a fuzzy version of
the multilayer perceptron are using the gradient-
descent-based back-propagation algorithm, by
incorporating concepts from fuzzy sets at various
stages. Besides, conventional two-state neural net
models generally deal with the ideal condition,
where an input feature is either present or absent
and each pattern belongs to either one class or
another. They do not consider cases where an input
feature may possess a property with a certain
degree of confidence, or where a pattern may
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belong to more than one class with a finite degree
of belongingness.

Broadly, the network passes through two
phases, viz., training and testing. During the
training phase supervised learning is used to assign
output membership values lying in the range (0, 1)
to the training vectors. Hence each output class
mode in the output layer, may be assigned a
nonzero membership instead of choosing the single
class (node) with the highest activation. This
allows modeling of fuzzy data when the feature
space involves overlapping pattern classes such
that a pattern point may belong to more than one
class with nonzero membership.

During training, each error in membership
assignment is fed back and the connection weights
of the network are appropriately updated. The back
propagated error is computed with respect to each
desired output, which is a membership value
denoting the degree of belongingness of the input
vector to that class. Hence the error which is back-
propagated for weight updating, has inherently
more weight in case of nodes with higher
membership values. The contribution of ambiguous
or uncertain vectors to the weight correction is
automatically reduced. This is natural as vectors
that are more typical of their class should have
more influence in determining the position and
shape of the decision surface.

The utility of the approach proposed here for
the modeling of output values may be further
appreciated by considering a point lying in a region
of overlapping class in the feature space. In such
cases its membership in each of these classes may
be nearly equal. Then there is no reason why we
should follow the crisp approach of classifying this
pattern as belonging to the class corresponding to
that output neuron with a slightly higher activation,
and thereby neglect the smaller yet significant
responses obtained for the other overlapping class.
After a number of cycles the neural net may
converge to a minimum error solution. The
network now encodes the input space information
in its connection weights. In the second phase, a
part of the same fuzzy data with is kept aside for
testing during random selection of the training set
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is applied as input and the network. Here each test
datum contributes a count at a particular position in
this matrix, its row corresponding to the class to
which it belongs (as determined from the hard
labels attached to the input data set) and its column
indicating the class corresponding to the neuronal
output providing the best match.

The proposed fuzzy neural network model is
capable of handling input feature presented in
quantitative and linguistic form. The components
of the input vector consist of the membership
values to the overlapping partitions of linguistic
properties low, medium and high corresponding to
each input feature. This provides scope for
incorporating linguistic information in both the
training and the testing phases of the said model
and increase its robustness in tackling imprecise or
uncertain input specifications.

During training, the learning rate and the
damping coefficient are gradually decreased until
the network hopefully converges to a minimum
error sultan. This heuristic helps to avoid spurious
local minima and usually prevents oscillations of
the mean square error in the weight space. In the
process, the network undergoes a maximal number
of sweeps through the training set.

Support Vector Machines

SVMs will be presented in a gentle way-starting
with linear separable problems, through the
classification tasks having overlapped classes but
still a linear separation boundary, beyond the
linearity assumptions to the nonlinear separation
boundary, and finally to the linear and nonlinear
regression problems. The adjective parsimonious
denotes an SVM with a small number of support
vectors. The scarcity of the model results from a
sophisticated learning that matches the model
capacity to the data complexity ensuring a good
performance in the future, previously unseen, data.
Same as the neural networks or similarly to them,
SVMs possess the well known ability of being
universal approximators of any multivariate
function to any desired degree of accuracy.
Consequently, they are of particular interest for
modeling the unknown, or partially known, highly
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nonlinear, complex systems, plants or processes.
SVMs have been developed in the reverse order to
the development of neural networks (NNs). SVMs
evolved from the sound theory to the
implementation and experiments, while the NNs
followed more heuristic path, from applications and
extensive experimentation to the theory. It is
interesting to note that the very strong theoretical
background of SVMs did not make them widely
appreciated at the beginning. The publication of the
first papers by Vapnik, Chervonenkis and co-
workers in 1964 / 65 went largely unnoticed till
1992. This was due to a widespread belief in the
statistical and/or machine learning community that,
despite being theoretically appealing, SVMs are
neither suitable nor relevant for practical
applications. They were taken seriously only when
excellent results on practical learning benchmarks
were achieved in digit recognition, computer vision
and text categorization. Today, SVMs show better
results than (or comparable outcomes to) NNs and
other statistical models, on the most popular
benchmark problems. The learning problem setting
for SVMs is as follows: there is some unknown and
nonlinear dependency (mapping, function) y = f (x)
between some high-dimensional input vector x and
scalar output y (or the vector output y as in the case
of multiclass SVMs). There is no information about
the underlying joint probability functions. Thus,
one must perform a distribution-free learning. The
only information available is a training data set D =
{(xi, yi) € XXY },1=1,1, where | stands for the
number of the training data pairs and is therefore
equal to the size of the training data set D. Often,
yi is denoted as di, where d stands for a desired
(target) value. Hence, SVMs belong to the
supervised learning techniques.

Note that this problem is similar to the classic
statistical inference. However, there are several
very important differences between the approaches
and assumptions in training SVMs and the ones in
classic statistics and/or NNs modeling. Classic
statistical inference is based on the following three
fundamental assumptions:

I.Data can be modeled by a set of linear in
parameter functions; this is a foundation of a
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parametric ~ paradigm in from
experimental data.

2.In the most of real-life problems, a stochastic
component of data is the normal probability
distribution law, that is, the underlying joint
probability distribution is a Gaussian distribution.

3.Because of the second assumption, the induction
paradigm for parameter estimation is the
maximum likelihood method, which is reduced to
the minimization of the sum-of-errors-squares
cost function in most engineering applications.
All three assumptions on which the classic

statistical paradigm relied turned out to be
inappropriate for many contemporary real-life
problems because of the following facts:

1. Modern problems are high-dimensional, and if
the underlying mapping is not very smooth the
linear paradigm needs an exponentially
increasing number of terms with an increasing
dimensionality of the input space X (an
increasing number of independent variables).
This is known as the curse of dimensionality.

learning

2. The underlying real-life data generation laws

may typically be very far from the normal
distribution and a model-builder must consider
this difference in order to construct an effective
learning algorithm.

3. From the first two points it follows that the

maximum likelihood estimator (and

consequently the sum of error squares cost

function) should be replaced by a new induction
paradigm that is uniformly better, in order to
model non-Gaussian distributions.

In addition to the three basic objectives above,
the novel SVMs’ problem setting and inductive
principle have been developed for standard
contemporary data sets which are typically high-
dimensional and sparse (meaning, the data sets
contain small number of the training data pairs).

SVMs are the so-called nonparametric models.
Nonparametric does not mean that the SVMs’
models do not have parameters at all. On the
contrary, their learning (selection, identification,
estimation, training or tuning) is the crucial issue
here. However, unlike in classic statistical
inference, the parameters are not predefined and
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their number depends on the training data used. In
other words, parameters that define the capacity of
the model are data-driven in such a way as to
match the model capacity to data complexity. This
is a basic paradigm of the structural risk
minimization (SRM) introduced by Vapnik and
Chervonenkis and their coworkers that led to the
new learning algorithm. Namely, there are two
basic constructive approaches possible in designing
a model that will have a good generalization

property.

1. Choose an appropriate structure of the model
(order of polynomials, number of HL neurons,
number of rules in the fuzzy logic model) and,
keeping the estimation error (a.k.a. confidence
interval, a.k.a. variance of the model) fixed in
this way, minimize the training error (i.e.,
empirical risk), or

2. Keep the value of the training error (a.k.a. an
approximation error, a.k.a. an empirical risk)
fixed (equal to zero or equal to some acceptable
level), and minimize the confidence interval.

3. Classic NNs implement the first approach (or
some of its sophisticated variants) and SVMs
implement the second strategy. In both cases
the resulting model should resolve the trade-off
between under-fitting and over-fitting the
training data. The final model structure (its

order) should ideally match the learning
machines capacity with training data
complexity. This important difference in two
learning  approaches comes from the
minimization of different cost (error, loss)
functional.

Table 1 tabulates the basic risk functional applied
in developing the three contemporary statistical
models di stands for desired values, w is the weight
vector subject to training, A is a regularization

parameter, P is a smoothness operator, Le is a loss
function of SVMs’, h is a VC dimension and Q is
a function bounding the capacity of the learning
machine. In classification problems Lg is typically
0-1 loss function, and in regression problems Lg is
the so-called Vapnik’s e-insensitivity loss (error)
function.

L, =|y—f(x,w)8 ={

0 ; if|y—f(x,w)£s
|y—f(x,w]—8 ;  otherwise

(3.16)

Where ¢ is a radius of a tube within which the
regression function must lie, after the successful
learning. (Note that for £=0, the interpolation of
training data will be performed). It is interesting to
note that (Girosi, 1997) has shown that under some
constraints the SV machine can also be derived
from the framework of regularization theory rather
than SLT and SRM. Thus, unlike the classic
adaptation algorithms (that work in the L2 norm),
SV machines represent novel learning techniques
which perform SRM. In this way, the SV machine
creates a model with minimized VC dimension and
when the VC dimension of the model is low, the
expected probability of error is low as well. This
means good performance on previously unseen
data, i.e., a good generalization. This property is of
particular interest because the model that
generalizes well is a good model and not the model
that performs well on training data pairs. Too good
a performance on training data is also known as an
extremely undesirable over fitting. In the simplest
pattern recognition tasks, support vector machines
use a linear separating hyper plane to create a
classifier with a maximal margin. In order to do
that, the learning problem for the SV machine will
be cast as a constrained nonlinear optimization
problem. In this setting the cost function will be

Table 1. Basic models and their error (risk) functional

Multilayer Regularization Network Support Vector Machine
Perception(NN) (Radial Basis Function Network) PP
2 _ ! 2 2 /
R=2(d, ~ f(x,w) R=X(d, = [, w)) <4 P R=). L, + Q(+h
i=1 i=1 — i=1 “—~— "
Closeness Closeness Smooth Closeness Capacity of
to data to data to data to data o machine
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quadratic and the constraints linear (i.e., one will
have to solve a classic quadratic programming
problem). In cases when given classes cannot be
linearly separated in the original input space, the
SV machine first (non-linearly) transforms the
original input space into a higher dimensional
feature space. This transformation can be achieved
by using various nonlinear mappings; polynomial,
sigmoidal as in multilayer perceptions, RBF

synaptic Vieight = 0
—— Synaptic Viielght < 0

Fig.8. FFNN model for Diabetes data;
Hidden layer activation function: Sigmoid
Output layer activation function: Sigmoid

Synaptic Vieight = 0
— SynapticVicight « 0

Croup

Fig.10. FFNN model for Bromide data;

Hidden layer activation function: Sigmoid

Output layer activation function: Sigmoid
mappings having as the basis functions radially
functions. After this nonlinear transformation step,
the task of an SV machine in finding the linear
optimal separating hyper plane in this feature space
is relatively trivial. Namely, the optimization
problem to solve in a feature space will be of the
same kind as the calculation of a maximal margin
separating hyper plane in the original input space
for linearly separable classes.
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In a probabilistic setting, there are three basic
components in all learning from- data tasks: A
generator of random inputs x, a system whose
training responses y (d) are used for training the
learning machine, and a learning machine which,
by using inputs xi and system’s responses Vi,
should learn (estimate, model) the unknown

dependency.
— s g ot
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P
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&

Fig.9. RBFN model for Diabetes data;
Hidden layer activation function: Softmax
Output layer activation function: Identity
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Fig.11. RBFN model for Bromide data:
Hidden layer activation function: Softmax
Output layer activation function: Identity

Application to FTIR pattern analysis

FTIR Spectroscopy is a form of vibrational
spectroscopic and the spectrum reflects both
molecular structure and molecular environment. A
molecule when exposed to the radiation produced
by the thermal emission of a hot source absorbs
only at frequencies corresponding to its molecular
mode of  vibration in the region of the
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Table 2. Parameter estimates for FFNN model (Diabetes data)
Predicted
Predictor Hidden Layer 1 Output Layer
H(:1) H(1:2) H(1:3) [Group=0] [Group=1]
(Bias) 3.585 -0.024 -3.675
PCALl 3.644 0.665 -2.195
Input Layer
PCA2 3.594 1.480 -2.233
PCA3 3.713 1.647 -3.091
(Bias) -1.052 0.133
. H(1:1) -2.621 2.388
Hidden Layer 1
H(1:2) -0.662 0.741
H(1:3) 2.406 -2.632
Table 3. Parameter Estimates for RBFN Model (Diabetes data)
Predicted
Predictor Hidden Layer® Output Layer
H(®) H(Q2) HQA) H@4) H(5) [Group=0] [Group=1]
PCALl 1.998 .088 -.446 -.957 -.592
Input Layer PCA2 2.000 .084 -.445 -.955 -.592
PCA3 2.003 .081 -.442 -.954 -.594
Hidden Unit Width .091 253 213 .188 .075
H(1) 3.001E-38 1.000
H(2) -.015 1.015
Hidden Layer H(@3) 266 734
H(4) 1.011 -.011
H(5) .682 318
a. Displays the center vector for each hidden unit

The IR region (1 to 100 uM) is

Table 4. Parameter Estimates for FFNN Model (Bromide data) SUdeVI(_ied in three zones, far (100 to 25
Tt uM), mid (25 to 2.5 uM) and near IR (2.5

. Output to 1 uM), The mid IR depicts primary

Predictor Hidden Layer 1 Layer | molecular vibration and in the most

H(:1) H(1:2) Group | common and widely used employed

(Bias) 0.040 0347 region for the analysis of substances in

PCl1 -0.104 0.667 chemistry and forensics. All molecules

Input Layer PC2 0.031 1.345 present characteristic absorbance peaks in
PC3 0615 0112 a section of this region (1350 cm-1 to

(Bias) o 1000' cm—1, 1uM=1'04 cm—.l), thus this

Hidden Layer 1 H(L) O physical property in considered as a
H(12) T molecules finger print. The far and near

IR are not frequently employed, because
only skeletal and secondary vibration occurs in
these regions producing spectra that are difficult to
interpret many of the IR bands of biological
interest occurs in the frequency range between
4000 to 1000cm—1. The FTIR spectrum of a cell

electromagnetic  spectrum between visible (real)
and short waves (micro waves). These changes in
vibrational motion give rise to bands in the
vibrational spectrum; each spectral band is
characterized by its frequencies and amplitude.
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will exhibit contribution from all cellular
macromolecules  including  protein,  liquid,
carbohydrates and DNA. Although the spectra are
complex, protein liquids

and DNA provide characteristic non-overlapping
contributions of the FTIR spectrum. IR

samples then MLP: Also the MLP constitutes
global approximations to non linear input-output
mapping, but RBF networks uses exponentially
decaying localized non-linearities to construct the
approximators. The data set is small and we have
divided 75 percent for training and 25 percent for

spectroscopy was greatly improved by the use of a  testing MLP and RBF networks. The binary
Table 5. Parameter Estimates for RBFN Model (Bromide data)
Predicted
Predictor Hidden Layer® Output Layer
H(1) H(Q2) HQ3) H@4) H(5) | H(6) Group
PC1 -0.747 | -0.550 | 0.833 -1.316 0.800 | -0.399
Input Layer PC2 -2.261 -1.455 0.141 0.721 0.118 0.963
PC3 -1.701 936 0.103 -0.559 -0.507 0.950
Hidden Unit Width 0.220 474 0.716 0.887 0.888 | 0.220
H(1) 1.101
H(Q2) 1.163
, HQ3) -1.685
Hidden Layer
H(4) -0.863
H(5) 0.669
H(6) 1.898

a. Displays the center vector for each hidden unit.

Table 6. Comparative predications of the Models

Sensitivity Specificity Correct Prediction
Database Model (%) (%) (%)
. Logistic 81.8 77.8 80.3
Diabetes data MLPNN 81.8 833 82.4
RBFNN 90.9 88.9 90.1
SVM 90.9 94 .4 92.2
. Logistic 66.7 733 70.8
Organic data MLPNN 777 80.0 79.1
RBFNN 88.9 86.7 87.5
SVM 88.9 93.3 91.7

new component the interferometer and by the
application of fast Fourier Transform algorithm
which allow for simultaneous detection of all
transmitted energy.

The multi-layer perception (MLP) and radial
basis function networks (RBF) are two non-linear
feed forward net works and both are universal
approximators. Hence we can find an RBF neural
network capable of accurately mimicking a
specified MLP or vice versa. However the two

methods differ each other. The most common
RBF networks has a single hidden layer where as
MLP may have more than one. The RBF network
trains extremely fast and require fewer training
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logistic regression analysis was also fitted for
comparison. All the models were fitted using SPSS
16.0 package. The efficiency of the models is
evaluated by sensitivity, specificity and accuracy.

For MLP network architecture, a single hidden
layer with sigmoid activation function, which is
optional for the diclorotomone out, is chosen. A
back propagation algorithm based on conjugate
gradient optimization technique was used the
model MLP. The RBF network considered for this
application was a single hidden layer with Gaussian
kernel and the activation function used is
symmetric. The cross validation layer error
correction method is used. The logistic regression
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model was fitted using the same input vectors as
in the neural network.

The network model for the diabetic organic
chemical data and chemical data are given in the
Fig.8-11. The corresponding parameter estimates
for connection weights are given in the Tables 2-6.
The FFNN architecture of diabetic and organic data
consists of one hidden layer each. The numbers of
nodes in the hidden layer are three and two
respectively for diabetic and organic data. The
sigmoid activation function is used for hidden and
output nodes. The input vectors are rescaled using
standardized method and output units are rescaled
using normalization method. The error function
used is sum of squares.

The RBF network model for diabetic data
consists of five hidden nodes and organic data
consists of six hidden nodes. For both the
networks the inputs were standardized.  The
softmax activation function was for hidden nodes
and identify activation function was used for the
output unit. The sum of squares error function was
used to adjust the weights.
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