Open Access Open Access  Restricted Access Subscription Access

Dendrimers: Potential Carriers for Drug Delivery


Affiliations
1 A. Patidar, SLT Institute of Pharmaceutical Sciences, Bilaspur,, India
 

The objectives of nanomedicine are to control and manipulate drug delivery, biomacromolecular constructions and supramolecular assemblies, which are critical to living cells in order to improve the quality of human health. Nanostructured carries are developed which have high level of control over the architectural design of dendrimers; their size, shape, branching length/density, and their surface functionality clearly distinguishes these structures as unique and optimum carriers in those applications. Dendrimers are currently attracting the interest of a great number of scientists because of their unusual chemical and physical properties and the wide range of potential application in different fields such as medicine,biology, chemistry, physics and engineering.
User
Notifications
Font Size

  • Achar S and Puddephatt RJ (1994). Organoplatinum dendrimers formed by oxidative addition. Angew. Chem., Int. Ed. Engl. 33: 847–849.
  • Archut A, Vogtle F, Cola LD, Azzellini GC, Balzani V, Ramanujam PS and Berg RH (1998). Azobenzene-functionalized cascade molecules: photoswitchable supramolecular systems. Chem. Eur. J. 4: 699–706.
  • Arima H, Kihara F, Hirayama Z and Uekama K (2001). Enhancement of gene expression by polyamidoamine dendrimer conjugates with a-, h-, and g-cyclodextrins. Bioconjug. Chem. 12: 476–484.
  • Bai S, Thomas C, and Ahsan F (2007). Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low molecular weight heparin. J. Pharm. Sci. 96: 2090-2106.
  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL and McManus AT (2001). Dendrimer–silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 1: 18– 21.
  • Barbara K and Maria B (2001). Review Dendrimers: properties and applications. Acta Biochimica Polonica, 48 (1): 199–208.
  • Beezer AE, King ASH, Martin IK, Mitchel JC, Twyman LJ, and Wain CF (2003). Dendrimers as potential drug carriers: encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron. 59: 3873– 3880.
  • Bosman AW, Bruining MJ, Kooijman H, Spek AL, Janssen RAJ, and Meijer EW (1998). Concerning the localization of end groups in dendrimers. J. Am. Chem. Soc. 120: 8547–8548.
  • Brothers HM, Piehler LT and Tomalia DA (1998). Slab-gel and capillary electrophoretic characterization of polyamidoamine dendrimers. J. Chromatogr. 814: 233– 246.
  • Caminade AM, Laurent RG, Majoral JP (2005). Characterization of dendrimers. Advanced Drug Delivery Reviews. 57: 2130– 2146. Cheng N, Man T. Xu R, Fu X, Wang XW and Wen L (2007). Transdermal delivery of delivery nonsteriodal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. pharm. sci. 96: 595-602.
  • Choi T, Thomas A, Kotlyar MTI and Baker JR (2005). Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clustersfor cancer cell-specific targeting. Chem. Biol. 12: 35-43.
  • Dandliker PJ, Diederich F, Zingg A, Gisselbrecht JP, Gross M, Louati A and Sanford E (1997). Dendrimers with porphyrin cores: synthetic models for globular heme proteins. Helv. Chim. Acta. 80: 1773– 1801.
  • de Brabander-van den Berg EMM, and Meijer EW (1993). Poly(propylene imine) dendrimers: large-scale synthesis by heterogeneously catalyzed hydrogenation. Angew. Chem., Int. Ed. Engl. 32: 1308–1311.
  • de Brabander-van den Berg EMM, Nijenhuis A, Mure M, Keulen J, Reintjens R, Vandenbooren F, Bosman B, Raat R, Frijns T, van den Wal S, Castelijns M, Put J, and Meijer EW (1994). Largescale production of polypropylenimine dendrimers. Macromol. Symp. 77: 51– 62.
  • Eichman JD, Bielinska AU, Kukowska-Latallo JF, and Baker JR (2000). The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technol. Today 3: 232– 245.
  • Farrington PJ, Hawker CJ, Frechet JMJ, and Mackay MM (1998). The melt viscosity of dendritic poly(benzyl ether) macromolecules, Macromolecules 31: 5043– 5050.
  • Francese G, Dunand FA, Loosli C, Merbach AE and Decurtins S (2003). Functionalization of PAMAM dendrimers with nitronyl nitroxide radicals as models for the outer-sphere relaxation in dendritic potential MRI contrast agents. Magn.Reson. Chem. 41: 81– 83.
  • Galliot C, Prvote D, Caminade AM and Majoral JP (1995). Polyaminophosphines containing dendrimers. Syntheses and characterizations. J. Am. Chem. Soc. 117: 5470– 5476.
  • Gensch T, Hofkens J, Heirmann A, Tsuda K, Verheijen W, Vosch T, Christ T, Basche T, Mullen K and Schryver FC (1999). Fluorescence detection from single dendrimers with multiple chromophores. Angew. Chem., Int. Ed. Engl. 38: 3752–3756.
  • Gillies ER and Fréchet JMJ (2005), Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today. 10: 35-43.
  • Hawker CJ and Frechet JM (1990). Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules, J. Am. Chem. Soc. 112: 7638– 7647.
  • Hecht S and Frechet JMJ (2001). Dendritic encapsulation of function: applying natures site isolation principle from biomimetics to materials science. Angew. Chem Int. Ed. Engl. 40: 74–91.
  • Hofkens J, Verheijen W, Shukla R, Dehaen W and Schryver FC (1998). Detection of a single dendrimer macromolecule with a fluorescent dihydropyrrolo-pyrroledione (DPP) core embedded in a thin polystyrene polymer film. Macromolecules 31: 4493– 4497.
  • Hudde T, Rayner SA, Comer RM, Weber M, Isaacs JD, Waldmann H, Larkin DPF and George AJT (1999). Activated polyamidoamine dendrimers, a nonviral vector for gene- transfer to the cornial endothelium. Gene Ther. 6: 939– 943.
  • Hummelen JC, Van Dongen JLJ and Meijer EW (1997). Electrospray mass spectrometry of poly(propylene imine) dendrimers— the issue of dendritic purity or polydispersity. Chem. Eur. J. 3: 1489– 1493.
  • Jiang DL and Aida T (1996). A dendritic iron porphyrin as a novel haemoproteinmimic: effects of the dendrimer cage on dioxygen binding activity. Chem. Commun. 1523 –1524.
  • Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S and Zhou J (1991). Molecular weight determination of a polyamidoamine starburst polymer by electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5: 383– 386.
  • Kim C and Son S (2000). Preparation of double-layered dendritic carbosilanes. J. Organomet. Chem. 599: 123–127.
  • Langereis S, Lussanet QG, M.H (2006). Genderen MH, Meijer EW, Beets-Tan RG, Griffioen AW, Engelshoven JM, and Backes WH. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed. 19: 133–141.
  • Malik N and Duncan R (2003). Dendritic-platinate drug delivery system. US 6,585,956.
  • Malik N and Duncan R (2004). Method of treating cancerous tumors with a dendritic-platinate drug delivery system, US 6,790,437.
  • Malik N, Evagorou EG and Duncan R (1999). Dendrimer–platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 10: 767–776.
  • Miller TM, Kwock EW and Neenan TX (1992). Synthesis of four generations of monodisperse aryl ester dendrimers based on 1,3,5-benzenetricarboxylic acid. Macromolecules 25: 3143– 3148. Mohammad N and Antony D (2006). Crossing cellular barriers using dendrimer nanotechnologies. Current Opinion in Pharmacology. 6: 522–527.
  • Newkome GR, Moorefield C and Vögtle F (2001). Dendrimers and Dendrons: Concepts, Syntheses, Perspectives. VCH, Weinheim,Germany, 2001.
  • Newkome GR, Weis CD, Moorefield CN and Weis I (1997). Detection and functionalization of dendrimers possessing free carboxylic acid moieties. Macromolecules. 30: 2300– 2304.
  • Newkome GR (2001). Dendrimers and dendrons: Concept, Synthesis, Application. NewYork: Wiley – VCH. 44,51,68,61.
  • Padilla De Jesus OL, Ihre HR, Gagne L, Frechet JMJ and Szoka Jr FC (2002). Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem. 13: 453– 461.
  • Pushkar S, Philip A, Pathak K and Pathak D (2006). Dendrimers: Nanotechnology Derived Novel Polymers in Drug Delivery. Indian J. Pharm. Educ. Res. 40 (3): 153-158.
  • Sakthivel T and Florence AT (2003). Adsorption of Amphipathic Dendrons on Polystyrene Nanoparticles. Int. J. Pharm. 254: 23-26.
  • Sebastian RM, Blais JC, Caminade AM and Majoral JP (2002). Synthesis and photochemical behavior of phosphorus dendrimers containing azobenzene units within the branches and/ or on the surface. Chem. Eur. J. 8: 2172– 2183.
  • Shakti KS, Lohiya GK, Limburkar PP, Dharbale NB and Mourya VK (2009). Dendrimer a versatile polymer in drug delivery. Asian J. of Pharm. 3: 178-182.
  • Singh P (1998). Terminal groups in starburst dendrimers: activation and reactions with proteins, Bioconjug. Chem. 9: 54– 63.
  • Sonke S and Tomalia DA (2005). Dendrimers in biomedical applications reflections on the Field. Advanced Drug Delivery Reviews. 57: 2106 – 2129.
  • Tomalia DA and Fréchet JMJ. (Eds.) (2002). Dendrimers and other Dendritic Polymers.Wiley, Chichester.
  • Vandamme TF and Brobeck L (2005). Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release. 102: 23–38.
  • Weyermann P, Gisselbrecht JP, Boudon C, Diederich F and Gross M (1999). Dendritic iron porphyrins with tethered axial ligands: new model compounds for cytochromes, Angew. Chem., Int. Ed. Engl. 38: 3214– 3219.
  • Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA and Lauterbur PC (1994). Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31: 1–8.
  • Wiener EC, Konda S, Shadron A, Brechbiel M and Gansow O (1997). Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest. Radiol. 32: 748–754.
  • Worner C and Mulhaupt R (1993). Polynitrile and polyaminefunctional poly(trimethylene imine) dendrimers. Angew. Chem., Int. Ed. Engl. 32: 1306– 1308.
  • Zeng F, Zimmerman SC, Kolotuchin SV, Reichert DEC and Ma Y (2002). Supramolecular polymer chemistry: design, synthesis, characterization, and kinetics, thermodynamics, and fidelity of formation of self-assembled dendrimers. Tetrahedron. 58: 825– 843.

Abstract Views: 68

PDF Views: 65




  • Dendrimers: Potential Carriers for Drug Delivery

Abstract Views: 68  |  PDF Views: 65

Authors

A. Patidar
A. Patidar, SLT Institute of Pharmaceutical Sciences, Bilaspur,, India
D. S. Thakur
A. Patidar, SLT Institute of Pharmaceutical Sciences, Bilaspur,, India

Abstract


The objectives of nanomedicine are to control and manipulate drug delivery, biomacromolecular constructions and supramolecular assemblies, which are critical to living cells in order to improve the quality of human health. Nanostructured carries are developed which have high level of control over the architectural design of dendrimers; their size, shape, branching length/density, and their surface functionality clearly distinguishes these structures as unique and optimum carriers in those applications. Dendrimers are currently attracting the interest of a great number of scientists because of their unusual chemical and physical properties and the wide range of potential application in different fields such as medicine,biology, chemistry, physics and engineering.

References