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Cassava is quite possibly the most widely recognized staple food crop. It is a nutty-flavored, starchy root vegetable that 
is a primary energy source and carbs for individuals. During crop cultivation, cassava plant infections can influence the leaf 
and root, bringing about a tremendous loss to the harvest and financial market esteem. Hence, it is vital to detect diseases in 
cassava plants. But it requires enormous labor, longer time planning, and thorough plant-specific knowledge. If disease 
detection is possible at the initial stages, then actions can be taken on time. Hence, there is a need to develop automatic 
detection methods for monitoring different parts of cassava plants. This study evaluates the efficiency of applying transfer 
learning to the pre-trained models for identifying diseases in cassava plants. The pre-trained EfficientNet model detects the 
disorders using data augmentation, fine-tuning the hyperparameters, cross-validation, and transfer learning. The 
experimentation is done with the cassava dataset provided by Kaggle, which contains cassava plant leaf images belonging to 
five classes. An experimental investigation shows that EfficientNet with transfer learning attains up to 89% accuracy. The 
effect of transfer learning is significant; consider getting the results of high accuracy and less dispersion; in very few cases, 
the model forecasts the wrong class labels. The outcomes give a promising strength to the objective of this work, i.e., a 
model trained explicitly for agriculture with transfer learning can assist the farmers with highly accurate results during 
farming to get a high yield. 

Keywords: Cassava leaf diseases, Deep learning, EfficientNet, Plant disease detection, Precision agriculture 

Introduction 
India is an agronomic country whose economy 

largely depends on the agriculture sector. Agriculture 
accounts for 16% of India's Gross Domestic Product 
(GDP) and 10% of its trade. About 75% of India relies 
upon the farming domain either straightforwardly or in 
a roundabout way.1 Henceforth, Agriculture has been a 
significant wellspring of economic development in 
India. Because of the rising populace, climate changes, 
and political vulnerability, farming enterprises started 
to search for new strategies to enhance the quantity of 
food produced, which permits specialists to search for 
novel high-efficiency advancements that are successful 
and precise. The farmer chooses the necessary harvest 
depending on the dirt sort, the climate condition of an 
area, and financial worth. Using precise agriculture 
with technological advances, farmers may gather the 
information to decide the correct choice for high 

production. Precise Agriculture (PA) is a cutting-edge 
innovation that provides advanced procedures for 
enhancing production in farming. By utilizing these 
refined advances, Economic improvement in 
agriculture can be accomplished. PA can be used in 
different applications, for example, identifying plant 
bugs, weed identification, crop yield estimation, 
disease identification in plants, etc. Farmers generally 
use pesticides to control pests and diseases and increase 
crop yield. Harvest infections are messing-up farmers 
with low yields and financial misfortunes. Along these 
lines, disease detection and estimating its seriousness 
should be characterized as suitable.2 

With the advancement of computational 
frameworks, specifically Graphical Processing Units 
(GPU) installed processors and Machine Learning 
associated Artificial Intelligence applications have 
accomplished outstanding development, prompting 
the improvement of novel systems and models, and 
Deep Learning.3 The computationally plausible deep 
learning models have reformed areas, for example, 
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image recognition, speech recognition, and some 
complex applications which involve the investigation 
of vast volumes of data, giving ample scope to the 
applications such as self-driving vehicles and 
translation. Applying these deep learning methods to 
the agriculture domain, precisely in the arena of plant 
disease determination, has been ongoing over the 
recent years and to a slightly restricted degree.4–9 
Numerous global scientists introduced diverse 
cutting-edge frameworks for automatically detecting 
plant diseases with different methods like Machine 
Learning and Deep Learning.10–19 

In Sub-Saharan Africa, cassava is possibly the most 
well-known vital food crop. Greenery and starchy 
roots are frequently ingestible plant components. The 
roots are usually burned-through because they are an 
essential source of energy that can be consumed as 
crude, bakedin a single coal oven, and cooked or 
handled in various methods for consumption.20,21 The 
greeneries and delicate sprouts are good sources of 
proteins and nutrients; hence, they are used as 
vegetables in numerous districts.22 African farmers 
are developing cassava in tiny, medium, and 
enormous scopes in extensive coverage of ecological 
and weather situations to contribute to food 
production and industrial harvest. However, the 
significant issue is cassava plants are easily affected 
by various diseases. Sometimes the cure to those 
diseases is to burn the plants to stop the further spread 
whenit is not identified at the early stages. It indicates 
a need for better-computerized methodologies that 
can support farmers in locating cassava diseases at 
early stages and counter acting them. 

For the cassava image dataset, transfer learning 
was performed. Therefore, this paper employs transfer 
learning to retrain an Efficient Net, a pre-trained 
Convolutional Neural Network (CNN) model, with an 
ImageNet dataset. The core objectives of this work 
are listed below: 
 Classifying cassava leaf diseases with Deep 

learning methods (retrained EfficientNet) to 
determine whether the cassava plant is healthy or 
suffers from any disease. 

 For the classification of disease, 5-fold cross-
validation is used. The folds are randomly selected, 
comprising almost equal proportions of the five 
different class labels. 

 After training, if new images are submitted as input 
to the system, it forecasts the disease category in 
the early stage. It supports taking corresponding 
measures to reduce its effect on the plant. 

 The agriculture sector is one of the critical domains 
of the nation, and this work supports improving the 
revenue from the field by recognizing infected 
plants at the initial stages. 

 
Analysis of Existing Works 

In farming, diseases in the plant cause a decrease in 
the yield bringing about monetary misfortune. 
Different researchers have projected various strategies 
to put beware of these contaminations. Some analysts 
have been using deep learning approaches such as 
CNNs to identify the characteristics of diseases and 
categorize disorders. A model based on Faster 
Region-based CNN, Region-based Fully CNN, and 
Single Shot Detector for locating plant diseases.23–26 
Their dataset comprises pictures of fruit & vegetable 
harvests and cereal yields. The authors apply data 
augmentation techniques like rotations, contrast 
enhancement, viewpoint change, and relative change. 
Adhikari et al. projected a methodology for 
automatically identifying plant diseases for tomato 
plants, such as late blight, grey spots, and bacterial 
canker.27 The deep learning model created 24 
convolutional layers and two eventually coupled layers 
to do this. The model attains a precision of 89% on the 
standard dataset called Plant Village and 76% on their 
private dataset. The model is planned using the  
familiar YOLO model.28 Karthik et al. introduced two 
deep models validated with the Plant Village dataset 
to distinguish three types of infections in tomato plants. 
In the model design, feed-forward CNN is  
used, followed by CNN with the instrument and 
leftover learning.29 The consideration-based  
CNN design introduced a remarkable precision of 98%. 
To discriminate ten classes (nine diseases and one 
solid) in tomato plants, Agarwal et al. designed a  
CNN with three convolutional, three max-pooling, and 
two related layers that had a general precision  
of 91.2%.(30) 

To diagnose nine pathogens in tomato plants, a 
novel portable program using MobileNet has  
been considered an efficient application.31–32 The 
application used 7,176 images of tomato leaves 
from the Plant Village dataset with a 90.3% 
accuracy rate. A CNN model was created by 
Widiyanto et al. to distinguish between healthy 
leaves and four tomato plant illnesses, including 
septoria leaf spot, late blight, yellow leaf twist 
infections, and mosaic disease.33 The created model 
trained on 1,000 pictures from the Plant Village 
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dataset for every class. The classification model has 
attained 96.6% accuracy for five classes. Disease 
identification in cassava plants dependent on 
computerized picture acknowledgment through 
feature extraction has shown promising 
outcomes.34–36 Yet, feature extraction is 
computationally expensive and requires domain 
knowledge to achieve high performance. The 
reviewed works on plant disease detection is shown 
in Table 1. 

Although there has been a large amount of 
development over the past few years, still specific 
gaps are detailed here: 
• The Plant Village dataset was typically utilized in 

studies to assess the efficacy and performance of 
the corresponding DL architectures.  

• Since the severity of plant diseases varies over 
time, DL models should be enhanced or adjusted 
to allow for the recognition and classification of 
diseases throughout their entire sequence of 
existence. 

• The DL architecture needs to be effective under 
various lighting circumstances; therefore, the 
datasets must also include pictures taken under 
different field conditions. 
A plant-specific dataset was used to retrain the 

EfficientNet model to address the gaps. The reason to 
select the EfficientNet model is that the model can 
succeed with greater efficiency and accuracy than 
current CNNs, lowering parameter size and FLOPS 
by a factor of ten. 

Materials and Methods 
 

Dataset Description 
Images used for the experiment were available on 

Kaggle.45 The dataset consisted of five cassava leaf 
classes and 10,000 labeled images collected during a 
formal review in Uganda. Farmers who took 
photographs of their nurseries contributed most of the 
images. Experts tagged the pictures at the National 
Crops Resources Research Institute and the Artificial 
Intelligence lab at Makerere University, Kampala. For 
practical training of the model, images need to be 
preprocessed to enhance the clarity of the images, and 
the class imbalance shown in Fig. 1 is also to be 

Table 1 — Remarks of the reviewed works on plant disease detection 

DL Architecture Dataset Images Plant type Performance Metrics 

Capsule Networks37 Created a new Experimental field 
dataset 

Mango leaf diseases Classification Accuracy (97%) 

R-FCN, SSD, Faster R-CNN  
with ResNet38 

5,000 images taken in the fields Nine diseases in tomato 85.98%  Precision with ResNet‐50 
and Region-based Fully 
Convolutional Network 

Artificial Neural Network39 9000 leave images inthe Plant 
Village dataset 

Five disease classes in 
tomato 

Accuracy 99.84% 

AlexNet, Google 
Net, and ResNet ss40 

5,560 Tomato plant images from 
Plant Village dataset 

Eight disease classes  
 

Accuracy 97.28% 

AlexNet SqueezeNet41 Plant Village dataset Ten disease classes of 
tomato leaves 

Accuracy 95.65% 

AlexNet,  
GoogLeNet, VGG42 

Plant Village and in‐field pictures  
of various plants 

Apple, blueberry, banana, 
cabbage, etc. 

The success rate of VGG  is the finest 
among all 

AlexNet, VGG16, SqueezeNet, 
GoogLeNet, InceptionResNetv2, 
ResNet50(43) 

Created a dataset with Real field 
images 

Plant diseases in Walnut, 
Apricot, Cherry, Peach  

ResNet-F1score(97.14),  
Accuracy (97.86 ±1.56)  

LeNet44 Plant Village 
 

Banana 
 

Classification Accuracy-98.6%,  
F1-score-98.6% 

 
 

Fig. 1 — Distribution of the number of instances per class 
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handled. The sample images of each class from the 
Cassava Dataset is shown in Fig. 2. The class names 
corresponding to classes 0 to 4 are Class-0: Cassava 
Bacterial Blight (CBB), Class-1: Cassava Brown 
Streak Disease (CBSD), Class-2: Cassava Green 
Motile (CGM), Class-3: Cassava Mosaic Disease 
(CMD) and Class-4: Healthy. 
 
Transfer Learning 

State-of-the-art models can be copied and utilized 
straightforwardly or combined with other models for 
customized tasks. Deep neural network models might 
require days or even a long time to train on enormous 
datasets. An approach to alternate route this procedure 
is to reutilize the pre-trained model weights produced 
with computer vision benchmark datasets, for 
example, ImageNet. 

Deep learning is a model initially trained on a task 
like an issue currently being addressed. Transfer 
learning uses the trained models of a particular task for 
another task. At least one layer from the pre-trained 
model is exploited for another problem of interest. 
Transfer learning reduces the required time for preparing 
a model with a lower error rate. Transfer learning is 
beneficial when the task on which the model was trained 
includes much more labeled information than the task to 
be solved, and the properties of the two tasks are similar.  
 
Need for Transfer Learning 

Transfer learning gives some help in recognizing 
essential features of the given image, which are 
helpful in classification tasks as opposed to the 
beginning without any preparation. For example, 
ImageNet loads trained on many pictures help us 

 

 
 

Fig. 2 — Sample images of each class from the Cassava Dataset (a) class 0, (b) class 1, (c) class 2, (d) class 3, and (e) class 4 
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recognize patterns like edges, shapes, and so forth, 
with no earlier learning on our dataset.  
 
Pre-trained Models 

The pre-trained models can be used as feature 
extractors for the model we want to design. In such 
cases, the pre-trained model output depends on the 
task characteristics to be solved. For instance, if the 
pictures involved in the task are entirely different 
from the images in the ImageNet, then the pre-
trained model's output is only valid up to some 
layers. On the other hand, if the images of the task 
are similar to images in the ImageNet, then, at that 
point, the output from layers is more valid in 
utilizing the deeper layers of the pre-trained 
network. In such cases, the pre-trained model can 
be used as a feature extraction task. The features 
extracted by the pre-trained model are given as 
input to the new model further to train the model 
with the new image features.   

On the other hand, the pre-trained or required part 
of the model can be incorporated straightforwardly 
into another model. In sucha case, the weights of the 
pre-trained models are to be fixed so that they are not 
refreshed when the new model is prepared. Then 
again, the consequences might be restored during the 
preparation of the new model, maybe with a lesser 
learning rate, permitting the pre-trained model to 
behave like a weight introduction conspire in 
preparing the new model. We can sum up these 
strategies as follows:  
 Classifier: The pre-trained model is utilized 

straightforwardly to predict the new pictures  
class label.  

 Separate Feature Extractor: The complete  
pre-trained model or part of it is utilized to retrieve 
and concentrate on the required features.  

 Integrated Feature Extractor: The complete model 
or part is incorporated with another model. 
However, layers of the pre-trained model are fixed 
when training the network.  

 Weight Initialization: The weights of the pre-trained 
model are considered as the weights of the  
new model, and the model is trained with new 
images. 
All the above-stated approaches are effective and 

save massive time in creating and preparing a deep 
CNN model. The new progressions in the domain of 
Computer Vision offer us a chance to initialize the 
model weights with the well-trained model weights 

obtained by training the deep CNN models with 
massive datasets.  
 
 

Transfer Learning with EfficientNet Network 
Tan Mingxing and Quoc V. Le proposed a well-

known architecture for image segmentation called 
EfficientNet.46 The EfficientNet has built up the idea 
of scaling up convolutional neural networks (CNN). 
The authors started their work with a question: is 
there any process to scale up CNNs to attain improved 
accuracy and efficiency? The authors stated the 
importance of balancing the network's three 
dimensions, i.e., width, depth, and resolution. The 
three dimensions can be offset by just scaling every 
size with a constant ratio. For this, the authors have 
applied the compound scaling method, which 
consistently scales network width, depth, and 
resolution with a fixed set of coefficients. For 
instance, if we decide to use 2X times more 
computational resources, then simply upturn the 
network depth by 𝛼, width by 𝛽 and image size by  
𝛾, where 𝛼,𝛽, and 𝛾 are fixed coefficients 
determined by a grid search on the original model.  

The summarized architecture of the EfficientNet-
B0 is shown in Table 2. Individual row defines a 
stage' i' with Li layers, with input resolution Hi × Wi 
and output channels Ci. By considering this as a base, 
the authors of EfficientNet have scaled the 
architecture with Compound Scaling to obtain 
EfficientNet-B1-B7.  

The critical idea of bottleneck design used in ResNet 
is 1×1 convolution usage to bring down the number of 
channels and perform the convolution operation with 
3×3 or 5×5 kernel size to the reduced channels to retrieve 
the features for classification. Lastly, use an extra 1×1 
convolution operation to enhance the number of 
channels to the original value. The bottleneck design 
used in ResNets has been displayed in Fig. 3(a). 

Table 2 — The base architecture of EfficientNet-B0 

Stage 
i 

Operator Resolution 
Hi × Wi 

#Channels 
Ci 

# Layers 
Li 

1 Conv 3 × 3 224 × 224 32 1 
2 MBConv1, k3×3 112 × 112 16 1 
3 MBConv6, k3×3 112 × 112 24 2 
4 MBConv6, k5×5 56 × 56 40 2 
5 MBConv6, k3×3 28 × 28 80 3 
6 MBConv6, k5×5 14 × 14 112 3 
7 MBConv6, k5×5 14 × 14 192 4 
8 MBConv6, k3×3 7 × 7 320 1 
9 Conv 1 × 1 & Pooling 

& FC 
7 × 7 1280 1 
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The MBConv layer is an inverted bottleneck block 
with excitation and squeeze connections. The inverted 
bottleneck, as in MBConv, does the reverse, i.e., 
instead of decreasing the channels, the 1×1 Conv layer 
maintains the channels to 3 times the original. Note 
that using a regular convolution operation may be 
computationally heavy. Hence, a Depth-wise 
Convolution is used to retrieve the output feature 
map. Lastly, the second 1×1 Conv layer is used to 
down sample the number of channels to the initial 
value. It has been exemplified in Figs 3(b & c). The 
compound scaling of EfficientNet-B0 uses a 
compound coefficient ′∅′ to scale the network width, 
depth, and resolution consistently. For EfficientNet-
B0, the value ∅ is taken as 1 and 𝛼 = 1.2, 𝛽 =1.1,  
𝛾 = 1.15. For EfficientNet-B1 to B7, the values of 𝛼,  
𝛽, 𝛾 are fixed to the values of B0, and different values  
∅  are used to decide the depth, width, and resolution 
of the network. 

For this research, the cassava leaf images are used 
by resizing all to 512 × 512 images from the dataset 
by considering the trained model EfficientNet-B7. 
While applying transfer learning, the pre-trained 
weights of the model, except the last layer, were 
loaded. The model was trained with stochastic 
gradient descent optimization for faster convergence 
by considering the pre-trained weights as primary 
weights. The learning rate was reduced by 5% if the 

validation loss did not change in the sequence's ten 
epochs. If the model is trained with all the training 
images once, it is considered as one epoch in the 
training process. The reduction in the learning rate 
increased the model's efficiency by adjusting to reach 
its local minimum. 
 
Analysis of Experimental Results 

This section explores the metrics used for assessing 
the efficiency of the trained model with transfer 
learning, the protocol design used in the 
experimentation, and the discussion on the results. 
 
Evaluation Metrics 

It is essential to assess how exactly it forecasts the 
appropriate label when building a classification 
model. However, this forecasting alone is not always 
enough because the model may sometimes deliver the 
wrong results. Hence, additional measures become 
imperative to decide the more important estimations 
and assessing the trained deep learning model. 

The efficiency metrics assessed primarily are 
accuracy, recall, precision, F1-score with the 
confusion matrix, and the maximum distinguished one 
AUC-ROC (Area Under Curve ROC) curve. The 
measures can be evaluated individually for the entire 
data or every class label. To validate the retrained 
EfficientNet of this study, recall, precision, and F1-
score are considered class labels wise, and the model's 
accuracy is evaluated. In the second case, the average 
of all class labels is viewed as the model's 
performance. 

Accuracy is a vital efficiency parameter for the task 
of classification. It is simple to apprehend and easy to 
relate to binary and multiclass classification issues. 
Accuracy shows the fraction of correctly classified 
instances in the dataset's total quantity of samples. 
Accuracy may also infer wrong information in  
the case of an imbalanced dataset. Hence, other 
measures are to be evaluated in that case. Precision 
shows the fraction of the reliable positives in 
estimated positives, and recall gives the fraction of 
complete positive samples efficiently forecasted as 
positive. The two metrics can be combined to create 
another measurement called the F1score if a trade-off 
between recall and precision is necessary. The 
harmonic mean of precision and recall between zero 
and one is the F1-score. The computational  
guidance for evaluating the standard measurements is 
given by Eqs (1–4). 

 
 

Fig. 3 — (a) Bottleneck design of inception model (b) and
(c) MBConv layers of EfficientNet 



J SCI IND RES VOL 82 MAY 2023 
 
 

542

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
்ା்ே

்ା்ேାிାிே
 … (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
்

்ାி
 … (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
்

்ାிே
 … (3) 

 

𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ  2 ∗
௦∗ோ
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 … (4) 

 
In Eq (1–4), TP, TN, FN, and FP indicate true 

positive, true negative, false negative, and false 
positive, respectively. A model is good if trained with 
recall and precision as 1, which thus gives F1-score as 
1. But generally, 100% accuracy isn't possible for any 
deep learning task. So the trained model ought to have 
higher accuracy, precision, and recall. 
 
Experimental Protocol 

Due to the extensive accessibility of the deep 
learning libraries and frameworks, Python® was used 
to implement the expected transfer learning of 
EfficientNet. The TensorFlow framework is used in 
the backend to build deep learning architectures. 
Experiments were done with Tensor Processing Unit 
(TPU) support, and to have parallel processing, we 
considered eight replicas of TPU for running the code. 

The challenging part of this dataset is the lack of 
good resolution and contrast images. The Contrast 
Limited Adaptive Histogram Equalization (CLAHE) 
technique is applied to enhance image quality.47 The 
CLAHE can support low-resolution computer vision 
models with poor contrast images to achieve much 
better performance. 

In the training process of EfficientNet, two kinds of 
parameters require concentration. First, the 
parameters learned in the model, such as weights in 
the model, and the second was hyperparameters, such 
as learning rates, epochs, batch size, input shape, etc. 
So, when the model was trained, the original weights 
of the EfficientNet-B7 were initially considered. 
Compared to the other well-known computer vision 
models, it has a precise good trade-off between the 
number of parameters and the accuracy o ImageNet. 
The initial weights were updated with gradient 
descent-based backpropagation. The model was 
trained with hyperparameters. However, the initial 
parameter values were enhanced by fine-tuning the 
importance of these hyperparameters with tuning 
procedures. The main parameters used were Batch 
Size as 16 * Replicas, Learning Rate as 3e-5 * 

Replicas, Epochs as 20 with 167 steps in each epoch, 
loss function as cross-entropy loss, and optimizer as 
SGD. 

The suggested methodology is applied using the  
5-fold cross-validation method. The experiment has 
been done five times. The five portions of the dataset 
were chosen at random. Every run includes a factor 
specified for testing, with the remaining four parts 
combined for training. The outcomes of the five runs 
are combined to provide the final results. 
 
Discussion of the Results 

The model's training started with 0.00000001 as 
the Learning rate; during the training process, it went 
up to 0.00024. The experimentation has been done 
with a 5-fold cross-validation technique to ensure that 
every image will participate in training and testing. 
For fold-1, the sparse categorical cross-entropy loss 
starts at 1.6291, and at the end of 20 epochs, it 
reduces to 0.2313. Similarly, the loss starts at 1.6364, 
1.6321, 1.6304, and 1.6217 and ends at 0.2354, 
0.2352, 0.2377, and 0.235 for fold-2 to fold-5, 
respectively. After the 20 epochs, the accuracy 
obtained is 0.889, 0.896, 0.82, 0.89, and 0.892 for 
fold-1 to fold-5, respectively. 

The confusion matrix obtained from the dataset 
gives a more specified evaluation by different shades 
of color on how model performance alters with the 
disease representations in the images. The rows of 
the confusion matrix were taken as the actual class 
label, and columns were taken as the predicted class 
label. Diagonal cells display the proportion of the 
instances for which the actual and predicted classes 
are matched. The off-diagonal cells convey  
the proportion of the instances in which 
misclassification happens. The trained model's 
confusion matrix given in Table 3 reported 70%, 
81%, 82%, 97%, and 73% of CBB, CBSD, CGM, 
CMD, and Healthy class images respectively. The 
off-diagonal cells in the Confusion matrix show that 
most misclassification happens in healthy and CBB 
images. The majority of misclassification in CBSD 
images was done as CBB diseased images. Most 

Table 3 — Confusion matrix for Multiclass classification  

CBB 0.7 0.05 0.03 0.04 0.17 
CBSD 0.05 0.81 0.03 0.04 0.07 
CGM 0.01 0.02 0.82 0.1 0.05 
CMD 0 0.01 0.02 0.97 0.01 
Healthy 0.09 0.06 0.06 0.07 0.73 
 CBB CBSD CGM CMD Healthy 
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misclassification of CGM images happens with 
CMD and vice versa. Misclassification in healthy 
images happens majorly as CBB diseased images. 

The classification report with the performance 
measures as precision, recall, and F1-score separately 
for every class label in the dataset are illustrated in 
Table 4. Recall achieved the highest of 97% for CMD 
disease and a minimum of 70% for CBB disease. 
Maximum and minimum precision values for CMD 
and CBB diseases are 96% and 65%, respectively. 
Similarly, 96% and 68% are maximum and minimum 
F1-score values for CMD and CBB diseases, 
respectively. Finally, the model has achieved an 
accuracy of 89% with the support of 21395 images.   

The images in Fig. 4 are randomly picked from 
the dataset, along with predictions made by the 
model. These images are random images of the 
dataset. These predictions show that applying 
transfer learning for EfficientNet is good for 

forecasting the leaf disease classifications in 
cassava plants. 
 
Conclusions 

The work can conclude that the effect of transfer 
learning is significant and considerably enhances the 
results of existing methods with a high percentage of 
accuracy and low loss rate. In some cases, the model 
failed to detect the diseases in the cassava plant 
leaves. The results exemplify a promising advance in 
automated disease detection in agriculture harvests. 
Subsequently, the next step is to take the issue of 
detected diseases by applying transfer learning on the 
EfficientNet model as the classification technique, 
under the hypothesis that a more precise detection 
allows for high classification accuracy. If that is the 
case, the entire framework could be a supporting tool 
for the farmer in the agriculture domain. This work is 
planned to explore and experiment with optimizing 

 

Table 4 — Evaluated performance metrics-class label wise 

Class Labels Precision Recall F1-Score Support 

Class-0 (CBB) 0.65 0.70 0.68 1086 
Class-1 (CBSD) 0.84 0.81 0.82 2189 
Class-2 (CGM) 0.81 0.82 0.82 2386 
Class-3 (CMD) 0.96 0.97 0.96 13158 
Class-4 (Healthy) 0.76 0.73 0.75 2576 
Accuracy — — 0.89 21395 

 

 
 

Fig.4 — (a) Class 3 (True), (b) Class 3 (True), (c) Class 0 (True), d)Class 4 (False, should be class 1), (e) Class 4 (False, should be 
class 0), (f) Class 1 (True), (g) Class 3 (True), (h) Class 3 (False, should be class 4), (i) Class 0 (False, should be class 4)), (j) Class 2 
(True), (k) Class 3 (True), and (l) Class 0 (True) 
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the EfficientNet architecture confined to a precise 
task: detecting specified four diseases with leaf 
images instead of using the whole architecture that 
considers any part of the plant which can be affected 
by conditions. Integrating this automated disease 
detection system with another system suggests the 
farmer's corresponding actions based on the identified 
disease. Finally, as said before, we are interested in 
assessing the work results to enhance the existing 
disease identification methods. Deep learning models 
for plant disease identification at early stages provide 
transcendental results in farming and research. 
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