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In the paper, we describe the development and implementation of reliable H∞filters for a class of Networked Markov 
Jump Systems (NMJS) with random sensor failures that are triggered by events. The plant's nonlinear dynamic is 
approximated with a NMJS. Failures of sensors are described using stochastic variables. The Event-Triggered Mechanism 
(ETM) is introduced to NCS, which offers some positive points over other schemes. Using the event-triggered mechanism, 
data of sensors from the plant will be only transmitted if it contradicts the specified condition. By considering the effects of 
an ETM and the sensor faults, the event-based filter is developed for NMJS. The design parameters of the filter as well as 
sufficient conditions for its existence are given accurately based on Linear Matrix Inequality (LMI).  
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Introduction 
Over the past few decades, significant results has 

been achieved by researchers and engineers in 
Markov Jump Systems (MJSs) because of its wide 
applications in practice.1–7 Observer-based controller 
for MJSs has been widely investigated such as finite-
time stabilization, H∞ control, etc.1–4 Besides this, a 
scheme of asynchronous H∞ fault detection filter 
under discrete homogeneous Markov jump linear 
systems has also gained popularity.5 The control of a 
asynchronous MJS has also been the interest of 
engineers in modeling.6 The Hidden Markov Model 
(HMM) has been introduced and the stability of 
systems is proved by adopting the composite 
stochastic Lyapunov function method. The issue of 
finite–time blended H∞ and asynchronous filter can be 
investigated for singular MJS based T-S fuzzy model, 
in which a scheme based on dynamic ETM is utilized 
to reduce the total transmission of sampled signals in 
the network.7 Hence, it is necessary to investigate the 
properties of a networked Markov Jump system with 
nonlinear effects. 

Because of the highly nonlinear characteristics of 
the most systems in the real world, the method that 
can effectively control them, such as nonlinear control 
which transforms the nonlinear systems which have 
high complexity to a series of linear systems through 
fuzzy rules, have attracted wide attention of 

researchers.8–13 Investigations on the design of T-S 
fuzzy model based with improved stability condition 
of continuous T-S fuzzy system are also presented in 
the literature available.10 In published literature, 
researchers discussed the issue of Stabilization 
Control of continuous nonlinear systems with time 
delay. While investigators focused on the design of 
controllers for continuous MIMO nonlinear systems.11 

With the rapid development of network technology 
and its wide application in real life, Networked 
Control Systems (NCSs) raised great attention 
which caused new control problems at the same time, 
such as data packet dropouts and delays caused 
by the unstable factor of network, security problems 
that are vulnerable to malicious attacks due to the 
openness of the network, and others. So many 
researchers have done a lot of work on these 
problems in the past 10 years. For example, 
The authors addressed the problems of delay and data 
loss by predicting the system dynamics in a limited 
range. 14,15 The authors have contributed to security 
control, in which a mechanism that based on an 
adaptive ETM is utilized to lighten the burden of 
transmission in the network and a model is 
established considering the NCSs under deception 
attacks.16 Besides, robust control has been widely 
employed to control the NCSs.17–19 Among them, the 
most significant differences are the control of time-
delay NCSs using a nonlinear model and the robust 
stabilization of a class of nonlinear NCSs without 
accounting for delays.18,19 
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In the H∞ control process, controller adopts H∞ 
norm as the control performance index, is one of the 
most essential and used methods in the area of robust 
control, which aims at finding a controller that 
minimizing the H∞ norm, and is also an optimal 
control method. Therefore, H∞ control theory has been 
applied to various systems, such as singular systems, 
NCSs, stochastic systems and so on.20–24 For example, 
as to switched systems with unknown signal 
disturbances, a controller is introduced to solve the H∞ 
finite-time control issue in.25 The authors utilized a 
new method of finite--time adaptive H∞ control, 
which ensure the finite-time boundedness while 
meeting H∞ level. This factor is also taken into 
account in this study.26 

This article makes the following contributions: 
1. New stochastic jump systems considering sensor 

faults are proposed that employ event-triggered 
schemes, which are not discussed in the published 
literatures.  

2. In terms of LMI, the H∞ filter must exist for 
sufficient conditions to be satisfied. Event 
generators and filtering can be designed together 
using these conditions. 

 

Method of system modeling  
Let consider the following NMJS: 

𝑝 𝑡 𝑨 𝑝 𝑡 𝑨 𝑝 𝑡 𝜂 𝑡 𝑩 𝜔 𝑡
𝑦 𝑡 𝑪 𝑝 𝑡
𝑧 𝑡 𝑳 𝑝 𝑡

      … (1) 

where, 
𝑝 𝑡 ∈ ℝ , presents the state vector of the 

nonlinear plant. 
𝑦 𝑡 ∈ ℝ , denotes the output vector of the model. 
𝑧 𝑡 ∈ ℝ describes the estimated signal of system. 
𝑨 ,𝑨 ,𝑩 ,𝑪 and𝑳 are belongs to 

parameter matrices with proper dimensions; 𝜔 𝑡 ∈
𝑳 0,∞  presents the disturbance sign; A time-
varying delay 𝜂 𝑡  is a series of values that represent 
value changes over the domain  𝜂 , 𝜂 , where 𝜂  
and 𝜂  are non-negative scalars. Within a set 
𝑴 1,2,⋅⋅⋅,𝑵, 𝜎 𝑡  represents a homogeneous 
Markov-jump process with finite states, then follows 
the probability matrix of transitions 𝜕 𝜋 𝔪  which 
yields to: 

𝑷 𝜎 𝔨 𝛻𝔨 𝔮|𝜎 𝔨 𝔯
𝜋𝔯𝔮𝛻𝔨 ∅ 𝛻𝔨 , 𝔯 𝔮

1 𝜋𝔯𝔯𝛻𝔨 ∅ 𝛻𝔨 , 𝔯 𝔮
 

… (2) 
where, 

𝑙𝑖𝑚 𝔨→
∅ 𝔨

𝔨
0,  𝛻𝔨 0 … (3) 

𝜋𝔯𝔮 0is the transition probability at time 𝔨 𝛻𝔨  
from the mode𝔯to𝔮 if𝔯 𝔮and𝜋𝔯𝔯 ∑ 𝜋𝔯𝔮𝔮∈𝑴,𝔮 𝔯 . 
Utilizing 𝜎 𝑡 𝑖 for simplicity. In the next section, 
authors present the general form of markov filter 
design. 
 

Markov Filter Design 
We propose a stochastic filter that has a 𝐻∞ index, 

which is presented as follows: 

𝑝 𝑡 𝔸 𝑝 𝑡 𝔹 𝑦 𝑡
𝑧 𝑡 ℂ 𝑝 𝑡   … (4) 

where, 
𝑧 𝑡 ∈ ℝ , describes the estimated signal of filter. 
𝑦 𝑡 ∈ ℝ , denotes the original input. 
𝑝 𝑡 ∈ ℝ , presents the state vector of the 

nonlinear filter. 

where, 𝔸 ∈ ℝ ,𝔹 ∈ ℝ , 
   ℂ ∈ ℝ  are to be calculated. 
 

We assume the network communication takes place 
with a time varying delay𝜇 , where𝜇 ∈ 0, �̄� , and 
the real number�̄�is greater than 0. As a result, we 
have the sensor measurements from the sample 
𝑦 𝑖 ℏ ,𝑦 𝑖 ℏ ,𝑦 𝑖 ℏ ,⋅⋅⋅ will reached at the filter 
node at the instants 

 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇 ,⋅⋅⋅. 
For the convince of the reader, now we denote the 

𝔸 𝔸 , 𝔹 𝔹  and so on. In Eq. (4), 
𝑦 𝑡  can be explained as: 

𝑦 𝑡 𝑪 𝑝 𝑖 ℏ ,  
𝑡 ∈ 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇   … (5) 

where, ℏ presents the sampling period, 

𝑖 ∈ 1,2,3,⋅⋅⋅ . At the time of transmission 𝑖 ℏand 
𝑖 ℏ, and 𝜇 and𝜇  are the delays caused by the 
network at the transmission instant. The following (5) 
can be rewritten considering the possibility of sensor 
failure: 
𝑦 𝑡 ∃𝑪 𝑝 𝑖 ℏ ∃ℓ𝑬ℓ𝑪 𝑝 𝑖 ℏ ,  
𝑡 ∈ 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇    … (6) 

For more detail of sensor fault, readers can refer to 
Liu & Yue.27 In order to simplify the network traffic, 
an event-triggered mechanism should be introduced 
that determines whether data which is currently 
sampled should be transmitted to the filter or not. The 
periodic sampling mechanism is known to send 
unnecessarily large amounts of data, which reduces 
bandwidth utilization. We propose a sensor-filter 
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system with an event generator. The smart sensor 
sampler, which will be explained in a sequel, samples 
the sensor measurements on a regular basis. The 
decision-making algorithm is as follows: 

ℰ ∃𝑦 𝑖 𝑗 ℏ ℰ ∃𝑦 𝑖ℏ ℧ ℰ ∃𝑦 𝑖 𝑗 ℏ
ℰ ∃𝑦 𝑖ℏ  

𝜈 ℰ ∃𝑦 𝑖 𝑗 ℏ ℧ ℰ ∃𝑦 𝑖 𝑗 ℏ   … (7) 

where, ℧ denotes the a symmetric non-negative 
definite matrix, 𝑗 1,2,⋅⋅⋅, and𝜈 ∈ 0,1 . In order to 
be sent to the filter from the event generator, the 
current sampled data must vary by the specified 
threshold (7). Let's look at two examples for technical 
convenience: 

Case ⅰ:If𝑖 ℏ ℏ �̄� 𝑖 ℏ 𝜇 , where �̄�  
max𝜇 ,  define𝜇 𝑡  as follows: 

𝜇 𝑡 𝑖 𝑖 ℏ,  
𝑡 ∈ 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇   … (8) 

The following information is easily obtainable: 

𝜇 𝜇 𝑡 𝑖 𝑖 ℏ 𝜇 ℏ �̄� … (9) 

Case ⅱ: If𝑖 ℏ ℏ �̄� 𝑖 ℏ 𝜇 , t the 
following intervals into consideration: 
𝑖 ℏ 𝜇 , 𝑖 ℏ ℏ �̄� ,  
𝑖 ℏ 𝑖ℏ �̄�, 𝑖 ℏ 𝑖ℏ ℏ �̄�   … (10) 

In view of𝜇 �̄�, it is easy to prove the existence 
of a positive integer𝛩 which satisfies 
𝑖 ℏ 𝛩 ℏ �̄� 𝑖 ℏ 𝜇 𝑖 ℏ 𝛿 ℏ ℏ �̄� 

… (3) 
Therefore, 𝑝 𝑖 ℏ  and 𝑖 ℏ 𝑖ℏ with 𝑖 1,2,⋅⋅⋅,𝛩  

fulfill (7). Let 

𝒢 𝑖 ℏ 𝜇 , 𝑖 ℏ ℏ �̄�
𝒢 𝑖 ℏ 𝑖ℏ �̄�,  𝑖 ℏ 𝑖ℏ ℏ �̄�
𝒢 𝑖 ℏ 𝛩 ℏ �̄�, 𝑖 ℏ 𝜇

 … (12) 

where, 𝑖 1,2,⋯ ,𝛩 1. The following can easily 
be demonstrated: 

𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇 𝒢  

                                                                         … (13) 
Let suppose: 

𝜇 𝑡
𝑖 𝑖 ℏ, 𝑡 ∈ 𝒢

𝑖 𝑖 𝑖 ℏ, 𝑡 ∈ 𝒢 , 𝑖 1,2,⋅⋅⋅,𝛩 1
𝑖 𝑖 ℏ 𝛩 ℏ, 𝑖 ∈ 𝒢

 

… (14) 

We can derive the following from the definition of 
𝜇 𝑡 : 

𝑖 𝜇 𝑡 ℏ �̄�, 𝑡 ∈ 𝒢
𝑖 �̄� 𝜇 𝑡 ℏ �̄�, 𝑡 ∈ 𝒢 , 𝑖 1,2,⋅⋅⋅,𝛩 1
𝑖 �̄� 𝜇 𝑡 ℏ �̄�, 𝑡 ∈ 𝒢

 

… (15) 
One can observe that in the 3  row in (15) 

satisfies on account of 𝑖 ℏ 𝜇 𝑖 ℏ 𝜇
1 ℏ �̄�. 

0 𝜇 𝜇 𝑡 ℏ �̄� ≜ 𝜇 , 
𝑖 ∈ 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇   … (16) 

From the Case ⅰ, define𝑒 𝑡 0. In the same 
consequences, from the Case ⅱ, measure the 
mathematical error that will occur between the latest 
transmission moment and the current sampling 
moment. 
∃𝑒 𝑡

0, 𝑡 ∈ 𝒢
∃𝑦 𝑖 ℏ ∃𝑦 𝑖 ℏ 𝑖ℏ , 𝑡 ∈ 𝒢 , 𝑖 1,2,⋅⋅⋅,𝛩 1
∃𝑦 𝑖 ℏ ∃𝑦 𝑖 ℏ 𝛩 ℏ , 𝑖 ∈ 𝒢

 

 … (17) 

Using the concept of (7), we can get: 

𝑦 𝑖 ℏ ∃𝑪 𝑝 𝑖 ℏ   … (18) 

Taking (6) and (17) and combining (18) and (15), 
the filter input is as follows: 

𝑦 𝑡 ∃𝑪 𝑝 𝑡 𝜇 𝑡 ∃𝑒 𝑡  
∃ ∃ 𝑪 𝑝 𝑡 𝜇 𝑡 , 
𝑡 ∈ 𝑖 ℏ 𝜇 , 𝑖 ℏ 𝜇   … (19) 

Let assume𝜆 𝑡
𝑝 𝑡
𝑝 𝑡 ,  �̃� 𝑡 𝑧 𝑡 𝑧 𝑡 , a 

filtering-error system can be combined to the 
following form: 

⎩
⎪
⎨

⎪
⎧𝜆 𝑡 𝑨𝜆 𝑡 𝑨 ℋ𝜆 𝑡 𝜂 𝑡 𝑩ℋ𝜆 𝑡 𝜇 𝑡

𝑩 𝑒 𝑡

𝑨 𝜔 𝑡 𝑩 ℋ𝜆 𝑡 𝜇 𝑡

�̃� 𝑡 𝑳𝜆 𝑡

 

… (20) 

where, 
 

𝑨
𝑨 0
0 𝔸 , 𝑨

𝑨
0

 ， 

 𝑩
0

𝔹 ∃𝑪 , 𝑩
0

𝔹 ∃ ， 
 

𝑨 𝑨
0

, 𝑩
0

𝔹 ∃ ∃ 𝑪   

𝑳 𝑳 ℂ , ℋ ℐ 0  
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Results 
We will present the analysis for the non-linear 

networked systems Eq. (20) with time-varying delays 
using the given filter which satisfies Eq. (4). Next, we 
will be discussing the filter design problem in the 
system. 

Corollary 1 For given positive scalars 𝛾, 𝜌, 
𝜂 ,𝜂 , and𝜇  plant (20) is stochastically stable with 
the H∞ performance index𝛾 with the triggered 
conditions (7) if there exist matrices 𝑷 0,𝑸ℓ
0,𝑹ℓ 0 ℓ 1,2,3 , and 𝑺 , 𝑻 ,𝑵  and 𝑀 , with 
proper dimensions satisfying 

𝛤 𝛤 0,  𝑖 𝑗  … (21) 

where, 
  

𝛤

⎣
⎢
⎢
⎢
⎡𝛷 𝛷 𝛷 𝛷 𝑠

¶ 𝛷 0 0

¶ ¶ 𝛷 0

¶ ¶ ¶ 𝛷 ⎦
⎥
⎥
⎥
⎤

 

  𝑛 1,2,3,4  
 

Φ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

Φ ¶ ¶ ¶
𝐑 Φ ¶ ¶

𝐇 𝐀 𝐏 𝐌 𝐌 Φ ¶

0 0 𝐍 𝐍 Φ

𝐇 𝐁 𝐏 𝐓 𝐓 0 0 0
0 0 0 0

𝐁 𝐏 0 0 0

𝐀 𝐏 0 0 0

 

¶ ¶ ¶ ¶
¶ ¶ ¶ ¶
¶ ¶ ¶ ¶
¶ ¶ ¶ ¶
𝛷 ¶ ¶ ¶

𝑺 𝑺 𝛷 ¶ ¶

0 0 ∃ ℧∃ ¶
0 0 0 𝛾 𝐼⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 … (22) 

𝛷 𝑷𝑨 𝑨 𝑷 𝑸 𝑸 𝑸 𝑹 𝑻 𝑻  

𝛷 𝑸 𝑹 𝑴 𝑴 , 𝛷
𝑴 𝑴 𝑵 𝑵  

𝛷 𝑸 𝑵 𝑵 , 𝛷
𝜌ℋ 𝑪 ∃ ℧∃𝑪 ℋ 𝑻 𝑵
𝑺 𝑺  

𝛷 𝑸 𝑺 𝑺  

𝛷

⎣
⎢
⎢
⎢
⎡ 𝐿 0 0 0
𝜂 𝑃𝐴 0 𝜂 𝑃𝐴 ℋ 0

𝜂 𝑃𝐴 0 𝜂 𝑃𝐴 ℋ 0

𝜇 𝑃𝐴 0 𝜇 𝑃𝐴 ℋ 0

 

0 0 0 0
𝜂𝑎𝑏𝑃𝐵ℋ 0 𝜂𝑎𝑏𝑃𝐵1 𝜂𝑎𝑏𝑃𝐴𝜔
𝜂𝑚𝑃𝐵ℋ 0 𝜂𝑚𝑃𝐵1 𝜂𝑚𝑃𝐴𝜔
𝜇𝑀𝑃𝐵ℋ 0 𝜇𝑀𝑃𝐵1 𝜇𝑀𝑃𝐴𝜔⎦

⎥
⎥
⎥
⎤

 

 

𝛷 𝑑𝑖𝑎𝑔 𝐼, 𝑃𝑅 𝑃, 𝑃𝑅 𝑃, 𝑃𝑅 𝑃 , 
𝛷 𝑑𝑖𝑎𝑔 ℜ ,ℜ ,ℜ  

1 1{ , , }, 1,2,3k k k

m

diag PR P PR P k     


𝛷 𝑑𝑖𝑎𝑔 𝑹 , 𝑹 ,  

𝜂 𝜂 𝜂  

𝛷 1

⎣
⎢
⎢
⎢
⎡0 0 0 0 𝐷

ˇ
0 0 0

0 0 0 0 𝐷
ˇ

0 0 0

0 0 0 0 𝐷
ˇ

0 0 0⎦
⎥
⎥
⎥
⎤

, 

𝐷
ˇ 𝜂 𝛿 𝑃𝐷 ℋ

⋮
𝜂 𝛿 𝑃𝐷 ℋ

 

𝐷
ˇ 𝜂 𝛿 𝑃𝐷 ℋ

⋮
𝜂 𝛿 𝑃𝐷 ℋ

, 

𝐷
ˇ 𝜇 𝛿 𝑃𝐷 ℋ

⋮
𝜇 𝛿 𝑃𝐷 ℋ

 

𝐷
0

𝔹 𝑬ℓ𝑪
, 𝑙 1,2,⋯ ,𝑚 

𝛷 1
𝜂 𝑴

𝜇 𝑻
,𝛷 2

𝜂 𝑴

𝜇 𝑺
,  

𝛷 3
𝜂 𝑵

𝜇 𝑺
,𝛷 4

𝜂 𝑵

𝜇 𝑻
 

𝑴 0 𝑴 𝑴 0 0 0 0 0 ,  

𝑵 0 0 𝑵 𝑵 0 0 0 0 ， 
𝑻 𝑻 0 0 0 𝑻 0 0 0 ,  

𝑺 0 0 0 0 𝑺 𝑺 0 0  
 

Proof: The following candidate for the Lyapunov 
functional is the right choice: 
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𝒪 𝑡 𝜆 𝑡 𝑷𝜆 𝑡  

𝒪 𝑡 𝜆 𝜙 𝑸 𝜆 𝜙 𝑑𝜙

𝜆 𝜙 𝑸 𝜆 𝜙 𝑑𝜙

𝜆 𝜙 𝑸 𝜆 𝜙 𝑑𝜙 

𝒪 𝑡 𝜆 𝜙 𝑹 𝜆 𝑣 𝑑𝑣𝑑𝜙

𝜂 𝜆 𝑣 𝑹 𝜆 𝑣 𝑑𝑣𝑑𝜙

𝜆 𝑣 𝑹 𝜆 𝑣 𝑑𝑣𝑑𝜙 

Notice 

𝜂 𝜆 𝑠 𝑹 𝜆 𝜙 𝑑𝜙

𝜆 𝑡
𝜆 𝑡 𝜂

𝑹 𝑹
𝑹 𝑹

𝜆 𝑡
𝜆 𝑡 𝜂  … (23) 

With the Free--weighting matrices can be used to 
obtain the following results: 

2𝜁 𝑡 𝑴 𝜆 𝑡 𝜂 𝜆 𝑡 𝜂 𝑡

𝜆 𝜙 𝑑𝜙 0 … (24) 

 

2𝜁 𝑡 𝑵 𝜆 𝑡 𝜂 𝑡 𝜆 𝑡 𝜂

𝜆 𝜙 𝑑𝜙 0 … (25) 

2𝜁 𝑡 𝑻 𝜆 𝑡 𝜆 𝑡 𝜇 𝑡 𝜆 𝜙 𝑑𝜙 0 

… (26) 
 

2𝜁 𝑡 𝑺 𝜆 𝑡 𝜇 𝑡 𝜆 𝑡 𝜇 𝜆 𝜙 𝑑𝜙 0 

… (27) 
These are matrices with proper dimensions called 

𝑴 , 𝑵 , 𝑻  and 𝑺  

2𝜁 𝑡 𝐌  
,
𝜆 𝜙 𝑑𝜙

 

𝜂 𝑡 𝜂 𝜁 𝑡 𝐌 𝐑 𝐌 𝜁 𝑡

  𝜆 𝜙 𝐑 𝜆 𝜙 𝑑𝜙
 

… (28) 

2𝜁 𝑡 𝐍   𝜆 𝜙 𝑑𝜙 

2𝜁 𝑡 𝐍   𝜆 𝜙 𝑑𝜙

  𝜆 𝜙 𝐑 𝜆 𝜙 𝑑𝜙
 … (29) 

2𝜁 𝑡 𝑻 𝜆 𝜙 𝑑𝜙

𝜇 𝑡 𝜁 𝑡 𝑻 𝑹 𝑻 𝜁 𝑡  

 𝜆  𝜙  𝑹 𝜆 𝜙 𝑑𝜙  … (30) 

2𝜁 𝑡 𝐒   𝜆 𝜙 𝑑𝜙

𝜇 𝜇 𝑡 𝜁 𝑡 𝐒 𝐑 𝐒 𝜁 𝑡

 
,

𝜆 𝜙 𝐑 𝜆 𝜙 𝑑𝜙
 

 … (31) 

Now, we can define the augmented vector that 
yields 

ℰ 𝒪 𝑡 ℰ 𝛾 𝜔 𝑡 𝜔 𝑡 �̃� 𝑡 �̃� 𝑡   … (32) 

It has been proven. 

Corollary 1 provides the foundation for designing a 
filter, such as (20). The following Remark provides an 
explicit expression for the filter parameters. 

Remark 1: Due to the limitations of the pages, the 
authors omitted some steps to get the general form 
Stochastic filter. 
 

𝔸 𝔸 𝑷   … (33) 

𝔹 𝑷 𝔹 𝑷    … (34) 

ℂ ℂ 𝑷    … (35) 

 
Conclusions 

A reliable H∞ filter design based on the  
Markov Jump System is also being examined  
for an event-based network control system.  
The event-triggered mechanism implemented over the 
system, in particular, reduces the network's 
communication load and increases its efficiency by 
streamlining communication. Additionally, the 
fundamental stability criterion is derived, and the 
design of filter technique is discussed, by using the 
networked Markov Jump model and the probabilistic 
sensor faults. Lastly, the optimal filter elements are 
specified.  
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