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The sensor response of the metal oxide based gas sensor has been simulated using Deep Neural Network (DNN) model. 
The neural network designed for the modelling of the sensor has single input layer, three hidden layers and single output 
layer. The linear regression algorithm has been used to compute the electrical conductance of the sensor at given 
temperature and pressure. The data generated through modified Wolkenstein method has been used for training, validation 
and testing of the developed network. The data for materials Tin (IV) oxide (SnO2), Tin (II) oxide (SnO) and Copper (I) 
oxide (Cu2O) with different Eg values has been utilized. The other input parameters like Temperature, ND, NC, NV, 
EF−ESSand ECS−EF are varied for the specific range to collect a variety of data for calculation of electrical conductance of 
the sensor. The total data used for training, validation and testing was 1,90,512 data points. The plots for training, validation 
and testing phase have been plotted. The sensor response computed through the proposed model is validated with the results 
of already published mathematical model. The sensor response shows steep change when the gas concentration of the target 
gas reaches above 10−8 atm. The proposed model can be retrained or transfer learning can be applied for using the same 
model for other types of materials for gas sensing applications. 
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Introduction 
Visual and auditory sensors are commercially 

available for industrial applications, but reliable 
chemical sensors for olfaction like applications are 
still limited. The gas sensors are used in numerous 
industrial applications like pollution monitoring, 
chemical industries, breath test for detecting alcohol, 
shelf-life detection of fruits and vegetables, natural 
gas leakage detection, medical and health monitoring 
and other complex chemical sensor systems.1–3 
Further, from the entrepreneurial aspect these sensors 
are a crucial component in all these applications, 
hence need intensive research in today’s competitive 
world. The electronic nose4,5 is such an example of an 
array of gas sensors complemented with a pattern 
recognition and machine learning based approach of 
identifying and classifying gases. A conventional 
electronic nose comprises of an array of sensors 
followed by the pre-processing circuit, controller and 
machine learning framework.6–8 Machine learning 

based modelling are explored by many researchers in 
recent times for industrial applications.9–11 These 
types of industrial sensors are likely to play a major 
role in IoT based applications because of their small 
size, weight and reduced hardware cost. Further these 
sensors have the capability of identifying inorganic 
chemical and Volatile Organic Compounds (VOCs). 

Metal oxide-based gas sensors with worthier 
material surface properties and extended sensing 
capabilities have been developed using Zinc oxide 
(ZnO), Titanium dioxide (TiO2), Silicon dioxide 
(SiO2), Nickel (II) oxide (NiO2), Ferric oxide (Fe2O3) 
and Copper (II) oxide (CuO).12 The sensing 
mechanism of these sensors is based upon the 
electrochemical process between the material and the 
target gases.13–16 The adsorption of target gas at the 
grain boundaries of the sensor causes interchange of 
charge. The adsorption process includes oxidation and 
reduction one by one till the equilibrium is achieved. 
At equilibrium the generation and degeneration of 
localized electronic states due to presence of oxygen 
and target gas is same. These generated electronic 
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states act as trap for negative and positive charged 
particles. This causes a transfer of charge at the 
surface of semiconductor and the gas molecules 
present in the environment. The complete process of 
adsorption and desorption causes a considerable 
amount of change in electrical properties of the 
sensor. The change in electrical conductance varies 
with the nature of gas and its concentration at the 
surface of sensor. This needs to be calibrated at given 
pressure and temperature to identify and compute the 
target gas concentration. 

Chemisorption is a process of direct chemical 
bonding of an atomic species to a solid-state 
semiconductor surface.17,18 Despite the fundamental 
feature and significance of chemisorption, linking the 
internal structure of different materials to their 
chemisorption properties remains a challenging task. 
Modelling of many physio-chemical systems requires 
specific scientific knowledge of the complex 
processes.19,20 

In past decade many researchers have been 
exploring the possibilities of applying mathematical 
modelling to further study the characteristics of the 
gas sensors. The efforts have also been put to increase 
the selectivity of such sensors for various critical 
applications.19–21 Wolkenstein’s model is a 
mathematical model which helps to understand the 
changes in electrical properties due to chemical 
process of adsorption and desorption.20 

For such complex chemisorption processes, the 
modelling of these systems becomes tedious. There 
are many assumptions which need to be incorporated 
to mathematically model these complex and non-
linear processes. These assumptions lead to the 
knowledge gap and scientifically make it not suitable 
for real time applications. Secondly, the data required 
to model and validate these processes is limited. 
These data driven machine learning models are black 
box models and does not incorporate scientific 
knowledge available in the literature.22–25 Further, 
combining both scientific knowledge and data driven 
approach results in better modelling of such 
processes.  

The presented approach is the extension of a data 
driven model computed using a modified Wolkenstein 
based model. The data collected using the developed 
mathematical model is fed to the DNN designed 
specifically for computation and prediction of 
electrical conductance of the sensor. Once the neural 
network is well trained using the developed dataset 
for SnO2, SnO and Cu2O, the network can be 

deployed for various other sensor and target gases in 
real world applications. This will solve various non-
linearity involved in the mathematical modelling of 
semiconductor-based gas sensors.  

The emphasis of presented study is on the neural 
network approach to model the complex non-linear 
chemisorption process. The theoretical model of 
chemisorption is discussed in next section of the 
paper, which has been used as the base for generation 
of dataset. The basic concept of DNN and the 
proposed architecture with detailed parameters are 
given in the manuscript. The simulations results have 
been explored and discussed along with the 
conclusion of paper with further future scope of the 
presented study. 
 
Mathematical Model 

The mathematical model computes the Sensor 
Response (SR) of gas sensor depending upon the 
process of adsorption at the surface boundaries. The 
oxygen molecules present in the local surface of 
sensor dissociates and gets adsorbed within the 
sensor. After adsorption of oxygen molecules, the 
process of charge transfer with the surface gets 
initiated as shown in Fig. 1.  

This charge transfer causes the changes in space 
charge region and results in change in electrical 

 
 

Fig. 1 — Adsorption-desorption process20 
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properties majorly electrical conductance of the 
sensor. In similar manner when sensor surface is 
exposed to target gas like CO the process of 
desorption takes place. This process further changes 
the electrical conductance in reverse direction. 

The mathematical models developed by researchers 
tries to model the process of adsorption-desorption 
and computes the equilibrium point. This equilibrium 
point then further utilized to compute the Probability 
Density Spectrum (PDS) of conductance at sensor 
surface. Further, SR is computed using Eq. (1): 

 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑆𝑅
    

    
 ... (1) 

 

where, 𝑆 𝑓  is the PDS of electrical conductance 
fluctuation as function of frequency f.  
𝑆 𝑓  mathematical formulation is as shown in 

Eq. (2):  
 

𝑆 𝑓 𝑒𝜇 𝑆 𝑓  ... (2) 
 

where, 
e is the charge of e− = 1.6 x10−19 coulombs, 
𝜇  = Electron mobility,  
s = Cross sectional area of sensing layer  
L = Length of sensing layer  
d is the thickness of the sensing layer typically  

The computed sensor response of the sensor at 
given gas concentration, pressure and temperature is 
then utilized for further analysis of the sensor 
properties. This method of mathematical modelling is 
completely based upon the physical process involved 
during adsorption-desorption.  
 
Deep Neural Network  

An Artificial Neural Network attempts to replicate 
the structure of neurons inside human brain which can 
understand the non-linear physical processes. The 
artificial neural network is formulated by constructing 
neurons and making there inter connections in a 
manner that they behave like interconnected brain 
cells. Neural networks consisting of a large number of 
neurons (nodes), which are arranged in layers, are 
called Deep Neural Networks (DNNs). The DNNs 
have revolutionized artificial intelligence for 
understanding and solving a variety of complex real-
world problems. The DNNs are a type of network that 
contains a single input layer, multiple hidden layers 
which allow them to learn nonlinear patterns from 
input data and finally an output layer. Each and every 
layer of the network consists of multiple neurons and 

every neuron takes multiple inputs and processes it as 
per the activation function and sends the computed 
output to the final layer as shown in Fig. 2. The x1, x2, 
......... xi……xn are called input nodes and y1, y2, 
.......yi, ........ym are called output nodes of the network. 
The output nodes for a logistic regression problem are 
one, for binary classification its value is two and for 
other complex problems it is on the higher side. 

A typical DNN that contains multiple hidden 
layers, allowing them to learn complex features and 
nonlinear patterns from input data is shown in Fig. 3. 
Each layer of a DNN processes the computed value of 
the previous layer with the help of neurons (nodes), 
with the final layer producing the resultant of the 
network. The layers in a DNN are connected by a set 
of weights (w1, w2,......wi,....wl), which are learned 
during the training process. Bias is the input 
independent weight which also needs to be computed 
and updated during training of the network. 

 
 

Fig. 2 — Basic structure of neural network 
 

 
 

Fig. 3 — Deep neural network architecture 
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These weights are responsible for further calculation 
and decision making of a neural network during 
deployment. The well-trained network with available 
dataset performs well in unknown situations (real 
world) as compared to the over or under trained 
network. The more layers a DNN has, the more 
complex features it can learn from the input data. 
However, training a DNN with many layers can be 
challenging, as the numbers of training parameters 
like weights, learning rate and gradients parameters 
varies from small to large range. Thus, an optimal 
number of nodes and hidden layers are designed for 
the given data set. 

Each node has its own transfer function to compute 
the output. This activation function takes input xi and 
bias bi along with the weights of edges between node 
and previous layer nodes as shown in Eq. (3). 
Activation functions add the non-linearity to the 
system which is required for modelling a complex 
system. The output yi is resultant of computation and 
denotes the feature extraction of all previous layers 
and the given node. Each node thus represents a 
particular pattern in the training data and leads to 
addition of its own contribution towards the 
nonlinearity of the system.  

 

𝑦 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  ∑ 𝑤 ∗ 𝑥  𝑏  ... (3) 
 

The initial step of implementation of DNN 
involves adjusting the weights of network to minimize 
a loss function which is called training of network. 
The loss function measures the closeness of data 
towards the desired output, and the target is to find the 
weights that minimize this function. The most 
common method for training DNNs is back 
propagation, in which the gradients of the loss 
function with respect to the weights are computed and 
used to update the weights using gradient descent. 
Other methods, such as stochastic gradient descent 
and adaptive learning rate methods, are also 
commonly used. This step is performed using the test 
dataset typically 70% to 80% of the total dataset. The 
second step is validation of the computed weights 
using the validation dataset typically 10% to 15%. 
Validation step involves application of validation 
dataset to the trained network and computing the 
accuracy or other parameters based upon the loss 
function. Once the desired accuracy is achieved on the 
validation dataset the training and validation step is 
over otherwise the network is modified based on 
analysis of results and both the steps are repeated over 
again and again. Finally, the deployment and testing 

step involving test data or real data is used for real life 
implementation.  
 

Proposed Work 
The non-linearity in the modelling of complex 

adsorption-desorption processes has been modelled 
using a DNN. The mathematical models used by 
various researchers are non-linear in nature and are 
very complex. Artificial neural networks are one of 
the possible solutions to derive these models from a 
data centric approach. The data collected from the 
mathematical model developed earlier has been used 
to feed the training of neural networks. The output 
parameter computed using a neural network is 
electrical conductance. The data was generated using 
modified Wolkenstein model equations for the 
materials SnO2, SnO and Cu2O with different Eg 
values. The other input parameters like Temperature, 
ND, NC, NV, EF–ESS and ECS–EF are varied for the 
specific range to collect a variety of data for 
calculation of electrical conductance of the sensor 
with respect to different materials and gas exposures. 
The pairwise relationship of various input and output 
parameters is plotted as show in Fig. 4 using an open-
source library seaborn. A two-dimension graph of 
each data variable is represented to understand the 
corelation between each data point. Further, the 
diagonal graphs represent univariate distribution of 
the data variable, which further helps in deciding the 
various parameters for DNN. This analysis of data 
determines the number of nodes and hidden layers in 
the further developed DNN. The collected data is 
segmented into three parts for training, validation and 
testing of neural network. 

The neural network architecture with the number of 
nodes designed to train and predicts the SR is shown 
in Fig. 5. The designed network has a single input 
layer, three hidden layers, and one output layer. The 
input layer has six nodes, three hidden layers have 16, 
8 and 4 nodes respectively. The output layer has a 
single node to represent the electrical conductance of 
the sensor. This architecture was proposed after 
various experiments and the rectified linear activation 
function (ReLU) is used as activation function for 
each neuron at each stage. The ReLU activation 
function contributes to the desired non linearity to the 
system. The output layer activation function is linear 
as the output of the network is a linear regression 
problem and the computed value of electrical 
conductance is floating point value. The Mean Square 
Error (MSE) has been used to optimize the neural 
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network for the given dataset. Further the batch size 
of 32 is used to train the network for 500 epochs. The 
total data used for training, validation and testing was 
1,90,512 which was generated using the modified 
Wolkenstein model. The experiments have been 
performed using different combination of layers and 
nodes. The models were trained and evaluated for 
accuracy and looked for Overfitting/Underfitting of 
the model. If the model found to be overfit the 
number of nodes and layers has been increased and 

vice-versa. The presented model with three hidden 
layers with 16, 8 and 4 nodes has been optimized for 
the current dataset. 

The number of weights (parameters) needed to be 
computed are shown in Table 1. The number of weights 
is computed as multiplication of the number of nodes in 
the n−1 layer and the number of nodes in the n layer, in 
addition to the bias for each node in the present layer. 

Total number of parameters (weights) between 
layeri and layerj = ni × nj + nj 

 
 

Fig. 4 — Pair wise relationship of data points 
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where, ni and nj are the number of nodes in layer i and 
j respectively. 

So the total number of parameters (weights) for the 
designed network is 112 + 136 + 36 + 5 = 289.  
 
Simulation Results and Discussions 

The simulation of the presented model has been 
conducted on Python using jupyter notebook 
platform. The physical parameters shown in Table 2 
which are input for computation of sensor response 
using Wolkenstein model are used for proposed 
model. The parameter EF−ESS represents the 
difference between Fermi state and induced surface 
state and it ranges between 0.1 to 0.7eV for different 
gases and sensor materials. Similarly, the ECS−EF is 
the difference between conduction band at surface and 

Fermi state. The doping concentration ND has been 
fixed in the range of 1016 to 1024 m−2. The Band Gap 
Eg has been considered 3.6, 0.9 and 2.7 for materials 
SnO2, SnO and Cu2O respectively.26 The temperature 
range considered for the model is 300 to 600K.  
These parameters are varied over the prescribed  
range and data has been generated using conventional 
Wolkenstein model20 and modified Wolkenstein 
model.21 The generated dataset has been used to train, 
validate and test the presented neural network 
architecture. 

The validation loss during the training of the 
network is shown in Fig. 6. Initially the validation 
loss which is the mean square error of the actual and 
predicted value of electrical conductance was very 
high during the forward propagation. After a few 
epochs of training this loss reduces significantly, this 
occurs due to updating of weights of the network 
during backward propagation. Once the validation 
loss stops decreasing the training is halted and the 

 
 

Fig. 5 — Proposed DNN architecture 

Table 1 — Number of parameters to be computed during training phase 

Layer (type) Output Shape Computation Param (weights) # 

dense (Dense) (None, 16) 6×16+6 (bias) 112 
dense_1 (Dense) (None, 8) 16×8+8 (bias) 136 
dense_2 (Dense) (None, 4) 8×4+4 (bias) 36 
dense_3 (Dense) (None, 1) 4×1+1 (bias) 5 

 

Table 2 — Physical parameters range used for data simulation 

Parameter Symbol Range 

Difference between Fermi level and induced surface states EF−Ess 0.1 to 0.7 eV 
Difference between conduction band at surface and Fermi state ECS−EF 0.5 to 0.7 eV 
Number of available states at Valence band NV 1025 to 2.5e1025m−2 
Doping Concentration ND 1016 to 1024m−2 
Number of available states at Conduction band NC 1024 to 3.5e1024m−2 
Band Gap Eg 3.6,0.9 and 2.7 
Temperature T 300 to 650K 

 
 
Fig. 6 — Validation loss for training and testing phase with
respect to number of epochs 
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network is set for feeding of validation data. The 
graph shows that validation data also depicts the same 
behaviour as depicted by the training data. Once the 
network weights are updated and the network shows 
no further improvement in validation loss the training 
step is completed and the network is available for real 
life prediction of unknown data i.e. test data.  

The prediction of the value of the electrical 
conductance by the network on the training set is well 
connected as shown in Fig. 7. There are very few data 
points which are away from the straight line of 
Predicted vs Actual value graph. This shows that the 
network is well trained and it has neither been under 
fit nor over fit during the training and validation 
phase. The factor of overfitting is further validated by 
the Fig. 8 which is on the validation data which has 
never been shown to the network during the training. 
The graph of training and validation data is quite 
similar in nature and hence proves the correct training 
of the network along with the architecture of the 
network is therefore perfect fit for the given dataset 
and problem statement.  

Finally, the trained neural network was tested using 
a test data set which has never been fed to the network 
during training and validation phase. The results 
shown in the Fig. 9 shows the straight line for 
Predicted vs Actual values of the electrical 
conductance. The straight line in test dataset similar to 
validation dataset prediction signifies that the training 
phase (including training and validation step) is 
neither over fitted nor under fitted. The proposed 
trained model is ready for deployment phase. This 
situation is like the real-life environment: if the input 
values are fed to the network, then it can compute the 
value of electrical conductance based on the 
computation of weights of the network.  

The plot of the proposed model is shown in Fig. 10 
for SR along with the results using the conventional 
mathematical model and modified Wolkenstein’s 
approach of oxygen chemisorption. The plot has been 
generated by applying the desired inputs to the neural 
network and computing the electrical conductance. 
Further this computed conductance has been used to 
compute sensor response from the Eq. (1). The SR 

 
 

Fig. 7 — Predicted vs Actual plot for training dataset 
 

 
 

Fig. 8 — Predicted vs Actual plot for Validation dataset 
 

 
 

Fig. 9 — Predicted vs Actual plot for test dataset 
 

 
 

Fig. 10 — Sensor Response comparison of proposed architecture
with Wolkenstein model20 and modified Wolkenstein model21 
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behaviour for the presented neural network is better 
than both the approaches for the given CO gas 
concentration. The proposed approach represents the 
improved sensor response compared to both 
conventional and modified Wolkenstein’s approach. 
The improved response is due to the fact that the 
proposed model inherits the non-linear behaviour of 
chemisorption process. The adsorption-desorption 
process is a complex process and the neural network 
approach captures the same during the training phase. 
The SR for partial pressure under 10−9 atm, of 
compared methods is not distinguishable. When the 
gas concentration of the target gas reaches above 10−8 
atm, the SR of the proposed neural based model raises 
steeply. The discussed behaviour proves that the 
designed neural network training and validation are 
done in an optimal manner. The under fitting and over 
fitting of the network has been taken care of and the 
network responds to the real-world data in an 
appropriate manner. 
 
Conclusions 

The neural network architecture proposed in this 
paper for modelling the chemisorption process of 
adsorption-desorption is well suited for SnO2, SnO 
and Cu2O. The trained model can be used to  
calculate the electrical conductance of various other 
semiconductor sensors. The presented model is 
compared with other mathematical models and found 
to be performing better for given target gas. The input 
parameters like Temperature, Band Gap, Doping 
concentration, Fermi Level etc. will depict the sensor 
response. The advantage of the presented approach is 
that it can be applied for other similar materials 
without going deep into the mathematical derivations 
and solving complex nonlinear equations. Further, 
proposed model can be retrained or transfer learning 
can be applied for using the same model for other 
types of oxides for gas sensing applications. In future 
proposed model can be upgraded or modified to cater 
to larger sets of sensors like array of gas sensors,  
e-nose applications and other complex industrial 
applications. 
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