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In modern Radar applications, optimal sequences have been used in many areas, such as communication systems, 

radar, and sonar, because of their minimal peak sidelobe level, which causes an increase in the signal -to-noise ratio 

with a good range resolution at the output. The literature survey shows various pulse compression techniques that are 

widely used to achieve superior range resolution and range detection performance. Several studies have been 

conducted on chaotic communication involving chaotic maps in recent years, producing promising results. These 

maps are used to generate different phase-coded sequences. The properties of the chaotic map sequences are almost 

random. The performance of these sequences has been studied with various optimization techniques in literature by 

employing a matched filter and a mismatched filter and is measured in terms of peak sidelobe ratio. But the 

performance has not improved significantly. This paper focused on improving performance using a new hybrid 

technique to design mismatched filters. This improvement is achieved by designing the coefficients of the 

mismatched filters using a combination of metaheuristic methods and an evolutionary algorithm for specializing in 

intensification and diversification. A significant improvement in the peak sidelobe ratio and range resolution is 
obtained when the mismatched filter is combined with adaptive filters at the output.  
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Introduction 

The practical problems associated with increasing 

the radar range with the desired range resolution and 

accuracy are addressed by pulse compression, which 

deals with the code that modulates the carrier during 

transmission. In radar, when the received echo signal 

from the target passes through a Matched Filter (MF), 

it generates the main lobe and many sidelobes at the 

output. The sidelobes may cause false alarms, or they 

may mask the peaks of the weak target echo signals. 

Therefore, having a minimum value of sidelobe peaks 

is better, resulting in a reduced peak sidelobe ratio. 

The minimum value of PSR indicates suppression of 

unwanted clutter and range sidelobes. Sidelobe 

reduction is where lots of research has been reported 

with considerable interest. 

The primary purpose of matched filter (MF) and 

Mismatched Filter (MMF) is to suppress the 

sidelobes. Ackroyd and Ghani proposed a least-

squares inverse filter approach to design a 

mismatched filter.
1
 Baden and Cohen introduced the 

iteratively reweighted least squares method to 

improve the PSR value.
2
 From the literature, it has 

been studied that the MMF coefficients can be 

optimized for obtaining good results with various 

input sequences. Based on this idea, Nunn
3
 proposed 

an optimization concept for the signals or sequences 

with the least value of peak sidelobe in its ACF. 

Levanon
4
 extended the optimization concept by 

recommending an optimized filter to minimize PSR. 

The coefficients of the optimized filter are designed 

so that it results in a minimum cost function when 

combined with input. This research aims to reduce the 

cost function in terms of PSR using a hybrid 

optimization technique. Here the input sequences are 

generated using a chaotic map in a chaos system that 

is highly influenced by initial conditions. The chaos 

theory has been discussed using different algorithms 

such as firefly algorithm
5
, differential evolution 

algorithm
6
, and genetic algorithm

7
 etc. In this paper, 

the performance of this chaotic sequence is evaluated 

—————— 
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by cross correlating this sequence with the optimized 

coefficients of the filter.  

Methodology 

The research work presented in literature
8 

compared the objective function of ternary sequences 

that is obtained from chaotic maps. These sequences 

are processed through the matched filter to get the 

auto-correlation pattern. The PSR achieved with MF 

was improved with the help of MMF. This paper 

optimizes MMF coefficients using the Grasshopper 

Optimization (GHO) technique and cascaded MMF 

designed with DE and GHO methods. The 

performance is examined by cross-correlating the 

chaotic phase-coded sequences with the filter 

coefficients.  

The Differential Evolution algorithm is a direct 

search stochastic optimization technique suggested by 

Storn and Price in 1995.
(9,10) 

The popularity of this 

method is due to its easy implementation of solving 

problems in different fields like synchronization and 

control of chaotic systems
11

, image enhancement 

problems and parameter identification.
12

 The 

optimization strategy followed for this algorithm is 

DE/rand/1/bin meaning thereby, random target 

vectors are chosen for the mutation. Here the bin 

acronym stands for the binomial decision rule, which 

is used for the recombination process. 

Grasshopper Optimization (GHO) Algorithm 

Over the last three decades, meta-heuristics 

optimization algorithms have attained exciting 

research areas. The GHO algorithm was suggested by 

Saremi et al.
13

 This algorithm has attracted a lot of 

research interest in solving optimization problems. 

Much of the research work has been done and 

published using GHO. Some of the recent swarm 

intelligence algorithms depend on grasshopper's 

natural foraging and swarming behaviour. These 

insects are hazardous pests that damage crop 

production and agriculture as they move slowly in 

their infancy but have a wide range of activities in 

adulthood.
14

 This characteristic of the swarm makes 

two modes in their search process: exploration and 

target search. Balancing intensification and 

diversification distinguish this method from other 

optimization techniques. One of the essential 

characteristics of the grasshopper is that it can 

effectively solve practical problems in the search 

space. GHO has many advantages over other 

evolutionary algorithms. It increases the average 

survival rate of grasshoppers and improves the 

random initial population. The abrupt changes at the 

initial stage of the optimization help the search on a 

global scale. These grasshoppers are then moving 

locally at the final step of optimization. The steps in 

GHO are presented in Fig. 1. 

The swarming behaviour of grasshoppers is 

mathematically expressed in Eq. (1). 

𝑃𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 … (1) 

where, 𝑃𝑖  is the position of i
th
 grasshopper, 𝑆𝑖  the

social interaction between grasshoppers and 

𝐺𝑖  indicate gravitational force on the i
th 

grasshopper. 𝐴𝑖 represents the wind direction. The

expansion of Eq. (1) can be written in Eq. (2) by 

substituting 𝑆𝑖 , 𝐺𝑖  and 𝐴𝑖 . The factor 𝐴𝑖  is always

tends toward the best solution 𝑇𝑑 .

𝑋𝑖
𝑑 = 𝑐 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2

𝑁
𝑗=1
𝑗≠𝑖

𝑠  𝑥𝑗
𝑑 − 𝑥𝑖

𝑑 𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
+ 𝑇𝑑  … (2) 

where, N is the number of grasshoppers. 𝑋𝑖
𝑑  is the

current location of i
th 

grasshoppers in D-dimensional 

solution space.  𝑢𝑏𝑑  and 𝑙𝑏𝑑are the upper and lower

limits of solution space. The function s(r) in Eq. (3) is 

a force function that describes the social interactions 

and can be defined as  

𝑠 𝑟 = 𝑓𝑒(−𝑟/𝑙) − 𝑒−𝑟 … (3) 

The factor 𝑐 in Eq. (4) is used to decrease the 

declination of coefficients which is defined as 

𝑐 =  𝑐𝑚𝑎𝑥 −
𝑙 𝑐𝑚𝑎𝑥 −𝑐𝑚𝑖𝑛

𝐿
… (4) 

where, 𝑐𝑚𝑎𝑥  and 𝑐𝑚𝑖𝑛  are the maximum and

minimum values of c, 't' is the present iteration, and L 

represents the total iteration count.  𝑥𝑗
𝑑 − 𝑥𝑖

𝑑   is the

distance between i
th 

and j
th
 grasshopper. 

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗

represents its unit vector, f is the intensity of 

Fig. 1 — Steps in grasshopper optimization algorithms 
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attraction, and 𝑙 is the attraction length in the s(r) 

function. 𝑇𝑑  is the value of the D
th
 dimension in the

target, i.e., the best solution. Hence, from Eq. (2), it is 

evident that the next location of the grasshoppers is 

updated based on its current location, target position 

(global best position), and the location of other 

grasshoppers in the swarm. The first part of the 

equation indicates the location of the grasshopper 

relative to others in the swarm and the other part 

replicates the movement for food sources.  

GHO provides the most promising target in the 

search space. The grasshoppers continuously migrate 

towards the promising target during the iterations to 

obtain the actual global optimum in the search space. 

Like other evolutionary algorithms, this method also 

considers the fitness function to control the search 

process and to get the optimal location in the search 

space to achieve the required objective function. The 

vector corresponding to this fitness value is 

considered a global optimal position vector 

transmitted to other grasshoppers in the swarm. 

Accordingly, the other grasshoppers adjust their 

positions until they achieve the target food. The 

accuracy of the target is improved with the 

approximation of global optima in proportion to 

iterations. It is to be noted that the exploitation 

characteristics of GHO satisfy the single test function, 

whereas the exploratory nature encourages the 

multimodal test function to fulfill.  

However, the challenging problems involving 

complex test functions are easily solved with the 

proper balance between GHO's exploitation and 

exploration property. Therefore, it may conclude that 

grasshopper optimization is significantly superior to 

other existing optimization algorithms. The flow chart 

in Fig. 2 clearly explains the procedure to follow in 

GHO using the pseudo-code. 
_________________________________________________ 

Pseudo code of Grasshopper Optimization Algorithm: 

_____________________________________________________ 

Initialize the population of grasshoppers Pi (i=1,2,….,n) 

Initialize cmax, cmin and maximum value of iteration L 

Compute the fitness f(Pi) of each grasshopper Pi 

T= best solution 

While (t< L) do 

Update c using equation (4) 

For i=1 to N (considering N number of grasshoppers in the 

population) 

Do 

Normalizing the distance between grasshoppers. 

Update the current position of the grasshopper using 

Eq. (2) 

Bring the current grasshopper back if it goes outside of the 

boundaries. 

end for 

Update T if a better solution found 

t = t+1 

end while 

Return the best solution T 

____________________________________________ 

The main aim of the optimization is to compute the 

minimum value of the fitness or cost function of the 

given problem for the proper estimation of 

computation time, convergence rate, and accuracy. 

The block diagram in Fig. 3 shows the methodology 

adopted in the present work. This section describes 

the use of cascaded MMF, where two MMFs are 

connected in the cascaded form.
15,16

 The coefficients 

of the first MMF are designed using differential 

evolution, whereas the second MMF is employed with 

the Grasshopper Optimization method.  

The output of the cascaded filter is processed by 

using adaptive techniques such as the Least Mean 

Square (LMS) and Binary Step Size Least Mean 

Square (BSSLMS) algorithm, as suggested earlier.
17

 

These adaptive algorithms are used to update their 

coefficients to improve the performance of the 

objective function, which is considered PSR. If the 

filter coefficients of the MMF are defined as  

𝐻 =   ℎ0 , ℎ1 , …… . ℎ𝑀−1 … (5) 

Fig. 2 — Flow chart diagram of GHO method 
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The output of the MMF is given in Eq. (6) 

𝐺𝑘 = ℎ𝑖 𝑠𝑖−𝑘
𝑀−1
𝑖=0  𝑓𝑜𝑟 −  𝑁 − 1 ≤ 𝑘 ≤  𝑀 − 1    … (6) 

where, M is the filter length and must have M ≥ N, si 

= 0 for i< 0 and i> N-1.  

The Peak sidelobe ratio of the MMF is measured 

using Eq. (7). 

𝑃𝑆𝑅 = 20 log
𝑚𝑎𝑥  𝐺𝑘≠𝑀−𝑁/2

𝐺𝑘=𝑀−𝑁/2
       … (7) 

Each variable vector/solution in the randomly 

generated population is selected as the MMF impulse 

response coefficients of length M. The crossover rate 

and the mutation factor are assumed as 0.5 and 0.2, 

respectively. The population size and the number of 

iterations is initialized. As per the literature, the 

matched filter coefficients are the input sequence. But 

the MMF coefficients are in the form of [Z S Z] 

which have a slight deviation from the zero-padded 

matched filter output response. Here Z refers to a 

zero-padded sequence having length (M-N)/2. The 

filter length is thrice of the input sequence length.  

Results & Discussion 

The research work in this paper shows the 

improvement in the performance of chaotic phase-

coded sequences using the proposed hybrid technique. 

The random population is considered as the MMF 

coefficients that are designed with different methods 

like differential evolution, Grass-Hopper optimization, 

and hybrid DE-GHO. The iteration count and 

population size are chosen as 200 each. The objective 

function PSR is measured at each step in the block 

diagram of Fig. 3 for the generated chaotic sequences. 

The comparison of binary logistic and improved 

logistic sequences in terms of PSR is given in Tables 1 

& 2. The output of the cascaded MMF using 

DE-GHO for the binary and ternary logistic code of 

length 20 is shown in Fig. 4.  

From Table 1, It is found that the 20-length binary 

logistic sequence has a PSR of −16.4782 dB with MF, 

−18.5910 dB with GHO-MMF, −20.2457 dB with

DE-MMF, −23.4677 dB with cascaded MMF using

DE with GHO. This value is then improved to

−32.4575 dB by connecting the adaptive filter using

LMS and −37.4665 dB using the BSSLMS algorithm.

Fig. 3 — Block diagram representation of cascaded MMF followed by Adaptive filter 

Table 1 — PSR analysis of Binary Logistic Sequence with MF, MMF and Adaptive Filters 

Length 
of the 

Seq 

PSR of 
MF (dB) 

ASP of 
MF 

PSR of 
Random 

POP (dB) 

PSR of 
MMF(GHO) 

(dB) 

ASP of 
MMF 

(GHO) 

PSR of 
MMF (DE) 

(dB) 

ASP of 
MMF 

(DE) 

PSR of 
MMF 

(DE-GHO) 
(dB) 

ASP of 
MMF 

(DE-
GHO) 

PSR of 
Adaptive 

LMS filter 
(dB) 

ASP 
with 

LMS 
Filter 

PSR of 
Adaptive 

BSSLMS 
filter (dB) 

ASP with 
BSSLMS 

Filter ASP 

20 −16.4782 0.15 −15.4934 −18.5910 0.1176 −20.2457 0.0972 −23.4677 0.0671 −32.4575 0.0238 −37.4665 0.0134 

25 −18.4164 0.12 −15.6402 −20.4175 0.0953 −22.2164 0.0775 −26.5881 0.0468 −41.0119 0.0089 −41.1336 0.0088 

30 −17.5012 0.1333 −17.2552 −20.9063 0.0901 −22.7878 0.0725 −25.8908 0.0508 −31.6292 0.0262 −31.3431 0.0271 

35 −16.9020 0.1429 −16.8850 −19.6061 0.1046 −21.9802 0.0796 −25.6863 0.0520 −29.0737 0.0352 −29.8559 0.0322 

40 −18.0618 0.1250 −17.0003 −20.6343 0.0930 −21.0055 0.0891 −23.5383 0.0665 −26.9241 0.0451 −26.9694 0.0448 

45 −17.5012 0.1333 −159606 −18.5273 0.1185 −19.9384 0.1007 −21.5002 0.0841 −24.4970 0.0596 −23.2980 0.0684 

50 −18.4164 0.1200 −17.5446 −19.7870 0.1025 −21.1079 0.0884 −23.6402 0.0658 −25.3826 0.0538 −25.6687 0.0521 

60 −17.5012 0.1333 −16.0468 −18.4654 0.1193 −20.2564 0.0971 −22.2313 0.0773 −25.4373 0.0535 −26.0767 0.0497 

70 −17.8171 0.1286 −17.4253 −19.7577 0.1028 −20.0439 0.0995 −22.2523 0.0772 −26.0849 0.0496 −26.1349 0.0493 

80 −18.9769 0.1125 −17.3692 −20.3885 0.0956 −20.1087 0.0988 −22.1209 0.0783 −24.5199 0.0594 −25.0460 0.0559 

90 −18.2570 0.1222 −17.9310 −19.5412 0.1054 −20.3289 0.0963 −23.0182 0.0706 −24.8114 0.0575 −25.1982 0.0550 

100 −19.1721 0.1100 −17.7017 −19.8464 0.1018 −20.4521 0.0949 −22.8739 0.0718 −25.6413 0.0522 −26.0161 0.0500 

150 −19.4394 0.1067 −18.4894 −20.5291 0.0941 −20.4272 0.0952 −22.6244 0.0739 −26.0373 0.0499 −26.0098 0.0501 

200 −20 0.1000 −19.4613 −21.5451 0.0837 −21.2824 0.0863 −23.5918 0.0661 −26.5863 0.0468 −27.0246 0.0445 

250 −20 0.1000 −19.4770 −21.1366 0.0877 −21.0270 0.0888 −22.8539 0.0720 −25.6982 0.0519 −26.6937 0.0463 

300 −20.5993 0.0933 −19.9365 −21.6519 0.0827 −21.7719 0.0815 −23.7541 0.0649 −26.3410 0.0482 −27.7150 0.0411 
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Similarly, Table 2 shows the performance analysis 

of improved logistic sequences of different lengths. 

The cross-correlated output of MMF for 13 length 

Barker sequence is shown in Fig. 5 in which it is 

observed that the output is not symmetric.  

The graphical representation in Fig. 6 shows the 

comparison results obtained for the binary logistic 

sequence as per the block diagram with different 

optimization techniques. In almost all the sequence 

lengths, the value of PSR is more using adaptive 

filters with BSSLMS than compared to LMS. The 

deviation of the performance is represented in Fig. 7 

Fig. 4 — Cascaded MMF output of binary and ternary code 

Fig. 5 — Cascaded MMF output of Barker code of length 13 

Table 2 — PSR analysis of Binary Improved Logistic Sequence with MF, MMF and Adaptive Filters 

Length 

of the 

Seq 

PSR of 

MF (dB) 

ASP of 

MF 

PSR of 

Random 

POP (dB) 

PSR of 

MMF(GH

O) (dB) 

ASP of 

MMF 

(GHO) 

PSR of 

MMF  

(DE) (dB) 

ASP of 

MMF 

(DE) 

PSR of MMF 

(DE-GHO) 

(dB) 

ASP of 

MMF 

(DE-
GHO) 

PSR of 

Adaptive 

LMS filter 
(dB) 

ASP with 

LMS 

Filter 

PSR of 

Adaptive 

BSSLMS 
filter (dB) 

ASP with 

BSSLMS 

Filter ASP 

20 −16.4782 0.1500 −15.1115 −19.2591 0.1089 −21.5558 0.0836 −24.3885 0.0603 −41.0718 0.0088 −39.6272 0.0104 

25 −18.4164 0.1200 −15.6402 −20.4175 0.0953 −22.2154 0.0775 −26.5881 0.0468 −41.0119 0.0089 −41.1336 0.0088 

30 −17.5012 0.1333 −17.6270 −22.4372 0.0755 −23.1621 0.0695 −27.7922 0.0408 −463232 0.0048 −38.3342 0.0121 

35 −16.9020 0.1429 −16.3843 −19.0920 0.1110 −20.2859 0.0968 −22.8603 0.0719 −26.4631 0.0475 −27.5640 0.0419 

40 −18.0618 0.1250 −17.0858 −20.1250 0.0986 −21.1656 0.0874 −24.0280 0.0629 −28.5388 0.0374 −27.6980 0.0412 

45 −17.5012 0.1333 −16.7572 −19.3392 0.1079 −20.6555 0.0927 −22.6766 0.0735 −25.8685 0.0509 −25.7506 0.0516 

50 −18.4164 0.1200 −17.2077 −20.2353 0.0973 −20.4115 0.0954 −23.6775 0.0655 −27.1717 0.0438 −27.7364 0.0410 

60 −18.6611 0.1167 −16.8587 −19.1339 0.1105 −19.8600 0.1016 −22.6008 0.0741 −25.1611 0.0552 −25.5005 0.0531 

70 −18.8402 0.1143 −17.6831 −20.1162 0.0987 −20.3498 0.0961 −22.2808 0.0778 −25.3858 0.0538 −26.0485 0.0498 

80 −18.0618 0.1250 −16.4554 −18.7405 0.1156 −19.5989 0.1047 −21.5798 0.0834 −24.9394 0.0566 −24.3397 0.0607 

90 −19.0849 0.1111 −17.5187 −19.5816 0.1049 −19.9161 0.1010 −22.0857 0.0787 −24.0032 0.0631 −24.9502 0.0566 

100 −18.4164 0.1200 −17.7904 −19.8282 0.1020 −20.2950 0.0967 −22.7015 0.0733 −25.9002 0.0507 −26.6932 0.0463 

150 −19.4394 0.1067 −18.8203 −20.7535 0.0917 −20.6359 0.0929 −22.8279 0.0722 −25.9365 0.0505 −26.3461 0.0482 

200 −19.5762 0.1050 −19.2477 −20.9546 0.0896 −21.1712 0.0874 −23.2653 0.0687 −25.6201 0.0524 −25.992 0.0505 

250 −20.3546 0.0960 −19.8895 −22.2633 0.0771 −21.7468 0.0818 −23.7132 0.0652 −26.4359 0.0477 −26.8180 0.0456 

300 −20.9151 0.0900 −19.9763 −21.8871 0.0805 −21.6498 0.0827 −23.4159 0.0675 −26.6098 0.0467 −27.7443 0.0410 

Fig. 6 — Performance comparison of binary logistic code for 

different lengths  

Fig. 7 — Performance comparison between binary and ternary 

codes 
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for binary and ternary sequences with MF, DE-GHO 

MMF and adaptive filter using BSSLMS. 

The tabular analysis of the performance of ternary 

logistic and improved logistic codes are presented in 

Table 3 and 4 respectively. 

Conclusions 

This paper describes a cascaded matched filter 

whose coefficients are updated using different 

optimization techniques such as Differential 

Evolution, the Grass-hopper algorithm, and adaptive 

algorithms. Initially, the results are compared with 

that of MF. The proposed method improves the 

performance of chaotic binary and ternary sequences. 

In this approach, the PSR is first measured from the 

auto-correlation pattern using MF. Then the analysis 

is carried out, which involves implementing MMF 

and cascading MMF. The evolution of the direction of 

the grasshopper depends on the attraction intensity 

and attraction length towards food sources. A reduced 

PSR of −40.81 dB is obtained with a Barker code of 

length 13 using DE-GHO cascaded MMF. It is also 

observed that in the case of binary and ternary, the 

improved logistic sequence provides an improved 

PSR of −41.0718 dB and −67.2278 dB, respectively, 

for length 20. Therefore, the performance achieved 

with adaptive techniques provides better results for 

large-length sequences. The future scope of this 

Table 3 — PSR analysis of Ternary Logistic Sequence with MF, MMF and Adaptive Filters 

Length 
of the 

Seq 

PSR of 
MF (dB) 

ASP of 
MF 

PSR of 
Random 

POP (dB) 

PSR of 
MMF(GH

O) (dB) 

ASP of 
MMF 

(GHO) 

PSR of 
MMF  

(DE) (dB) 

ASP of 
MMF 

(DE) 

PSR of MMF 
(DE-GHO) 

(dB) 

ASP of 
MMF 

(DE-

GHO) 

PSR of 
Adaptive 

LMS filter 

(dB) 

ASP with 
LMS 

Filter 

PSR of 
Adaptive 

BSSLMS 

filter (dB) 

ASP with 
BSSLMS 

Filter ASP 

20 −17.5012 0.1333 −15.0248 −19.4624 0.1064 −23.3002 0.0684 −26.5134 0.0472 −49.5110 0.0033 −43.6092 0.0066 

25 −16.4782 0.1500 −15.2342 −18.4325 0.1198 −20.8654 0.0905 −23.9174 0.0637 −28.7052 0.0367 −36.2132 0.0155 

30 −17.6921 0.1304 −15.7040 −20.0109 0.0999 −22.0000 0.0794 −26.7712 0.0459 −30.6975 0.0292 −30.7607 0.0290 

35 −18.4164 0.1200 −15.8534 −20.1260 0.0986 −21.6917 0.0823 −25.4675 0.0533 −32.4800 0.0238 −30.6295 0.0294 

40 −17.786 0.129 −15.4349 −18.4252 0.1199 −19.7365 0.1031 −22.4725 0.0752 −25.8782 0.0508 −26.9057 0.0452 

45 −16.6502 0.1471 −15.9752 −19.1704 0.1100 −20.3659 0.0959 −23.9845 0.0632 −27.8874 0.0403 −26.6740 0.0464 

50 −18.8402 0.1143 −16.8751 −20.7895 0.0913 −21.5706 0.0835 −25.4806 0.0532 −29.3431 0.0341 −30.0807 0.0313 

60 −17.6921 0.1304 −16.7378 −20.7520 0.0917 −20.2218 0.0975 −22.5436 0.0746 −27.5124 0.0421 −27.6764 0.0413 

70 −18.5884 0.1176 −16.3861 −19.2927 0.1085 −19.4418 0.1066 −22.0284 0.0792 −23.7586 0.0649 −24.1882 0.0617 

80 −18.2155 0.1228 −16.3143 −18.9969 0.1122 −19.5769 0.1050 −24.1442 0.0781 −24.5848 0.0590 −24.9342 0.0567 

90 −18.4597 0.1194 −17.7184 −19.5642 0.1051 −19.7995 0.1023 −22.5531 0.0745 −25.5702 0.0527 −25.6803 0.0520 

100 −18.5314 0.1184 −16.8518 −19.2871 0.1086 −19.6523 0.1041 −21.9934 0.0795 −25.0646 0.0558 −25.2448 0.0547 

150 −19.2442 0.1091 −17.6430 −20.2006 0.0977 −20.2627 0.0970 −22.4629 0.0753 −24.1357 0.0621 −24.5855 0.0590 

200 −20.2848 0.0968 −19.2517 −21.3321 0.0858 −21.0905 0.0882 −22.8753 0.0718 −25.5536 0.0528 −25.7896 0.0513 

250 −19.8618 0.1016 −19.1704 −21.0567 0.0885 −21.1177 0.0879 −22.6574 0.0736 −25.1042 0.0556 −25.4619 0.0533 

300 −20.5993 0.0933 −19.6937 −21.0901 0.0882 −21.0065 0.0891 −22.8101 0.0724 −24.8396 0.0573 −25.8852 0.0508 

Table 4 — PSR analysis of ternary improved logistic sequence with MF, MMF and adaptive filters 

Length 
of the 

Seq 

PSR of 
MF (dB) 

ASP of 
MF 

PSR of 
Random 

POP (dB) 

PSR of 
MMF(GH

O) (dB) 

ASP of 
MMF 

(GHO) 

PSR of 
MMF  

(DE) (dB) 

ASP of 
MMF 

(DE) 

PSR of 
MMF  (DE-

GHO) (dB) 

ASP of 
MMF 

(DE-

GHO) 

PSR of 
Adaptive 

LMS filter 

(dB) 

ASP with 
LMS Filter 

PSR of 
Adaptive 

BSSLMS 

filter (dB) 

ASP 
withBSSLM

S Filter ASP 

20 −20.8279 0.0909 −14.8504 −20.1309 0.0985 −24.0491 0.0627 −28.2971 0.0385 −67.2278 4.35*10^−4 −44.1552 0.0062 

25 −19.0849 0.1111 −14.5911 −20.1791 0.0980 −22.1052 0.0785 −26.9982 0.0447 −46.3103 0.0048 −42.0557 0.0079 

30 −19.0849 0.1111 −15.6993 −19.9760 0.1003 −20.6842 0.0924 −23.5140 0.0667 −30.2589 0.0307 −35.6193 0.0166 

35 −18.5884 0.1176 −14.8790 −19.2322 0.1092 −20.2691 0.0969 −24.4892 0.0596 −27.7986 0.0407 −29.5084 0.0335 

40 −18.5884 0.1176 −15.4193 −20.0221 0.0997 −20.1224 0.0986 −23.5035 00668 −27.2611 0.0433 −27.3968 0.0427 

45 −18.4164 0.1200 −15.0988 −18.8990 0.1135 −19.1970 0.1097 −22.8168 0.0723 −26.9743 0.0448 −26.7416 0.0460 

50 −18.4164 0.1200 −16.2884 −18.5614 0.1180 −19.1211 0.1106 −22.4155 0.0757 −24.6556 0.0585 −25.3526 0.0540 

60 −18.7570 0.1154 −15.5359 −18.5299 0.1184 −18.9968 0.1122 −22.6518 0.0737 −25.5000 0.0531 −25.9931 0.0502 

70 −18.5884 0.1176 −15.9355 −18.6981 0.1162 −19.3715 0.1075 −22.3446 0.0763 −24.3456 0.0606 −24.5348 0.0593 

80 −19.0849 0.1111 −16.7969 −20.2535 0.0971 −19.8908 0.1013 −22.4326 0.0756 −25.7312 0.0517 −25.7165 0.0518 

90 −18.6900 0.1163 −16.4654 −19.7348 0.1031 −19.1865 0.1098 −22.0894 0.0786 −23.8671 0.0641 −23.9772 0.0633 

100 −19.0849 0.1111 −17.4694 −19.2057 0.1096 −19.5377 0.1055 −22.1766 0.0778 −24.9620 0.0565 −26.1371 0.0493 

150 −19.6680 0.1039 −17.6942 −20.8245 0.0909 −20.2335 0.0973 −22.9604 0.0711 −24.0001 0.0631 −24.8094 0.0575 

200 −20.7485 0.0917 −18.4780 −21.3907 0.0852 −20.5203 0.0942 −23.5510 0.0664 −26.0949 0.0496 −25.9238 0.0506 

250 −20.7618 0.0916 −19.0024 −21.2837 0.0863 −20.8261 0.0909 −22.7746 0.0727 −25.2117 0.0549 −25.1840 0.0551 

300 −20.9399 0.0897 −19.7297 −22.0026 0.0794 −20.8628 0.0905 −23.7233 0.0651 −25.5237 0.0529 −26.2356 0.0488 
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research work can be extended to obtain better results 

by using the other polyphase sequences with different 

hybrid optimization techniques. 
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