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This paper introduces one improved version of the Grey Wolf Optimization algorithm (GWO), one of the newly 

established nature-inspired metaheuristic algorithms, and the suggested approach is termed Chaotic Grey Wolf Optimization 

(CGWO). The newly suggested approach CGWO is premeditated by the integration of the chaos technique with the GWO 

algorithm, aiming to resolve global optimization problems by maintaining a proper balance between exploration and 

exploitation. In the proposed approach, CGWO is assessed over the classic 23 benchmark functions. The proficiency of the 

freshly suggested approach, CGWO is verified by comparing it with contemporary methods as well as examined through 

statistical analysis also. Further, the same CGWO is utilized to train neural networks (MLP) by considering benchmark 
datasets, for data classification and establishing a better classifier algorithm. 
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Introduction 

Nature gives a portion of the productive 

approaches to take care of some complex problems or 

issues. Algorithms that are stimulated by nature are 

called nature-inspired algorithms. Nature-motivated 

calculations are novel, encompass critical thinking 

techniques, and have been dragging significant 

consideration for their great performance. 

Representative instances of nature-inspired algorithms 

include swarm intelligence, evolutionary computing, 

neural computation, cognitive computing, and 

artificial immune systems. These nature-inspiring 

algorithms have a major role in unravelling many 

real-world intricate difficulties by using optimization 

techniques and models. Optimization is defined as the 

assortment of the finest solutions.
1
 Fundamental 

results and numerical optimization methods can be 

used to find the ideal choice among many possible 

alternatives. Optimization techniques follow 

deterministic and random intelligence approaches. 

Deterministic methodologies produce indistinguishable 

arrangements if the initiation values are equal when 

taking care of a similar issue. Unlike deterministic 

methodologies, gradient-free stochastic approaches 

are mainly centred on random walks.  

Swarm Intelligence represents a sort of critical 
thinking capacity that rises in the collaborations of 
basic data handling units. The idea of a swarm 
suggests variety, stochasticity, randomness, and chaos 
and the concept of intelligence refers to the critical 
thinking technique in some way.

2 
The data handling 

units that create a swarm can be quickened, machine-
driven, computational, and scientific. These data 
handling units may be birds, insects, or human beings 
and those may be array elements, robots, or anything 
else.

3
 Generally, optimization problems can be solved 

by utilizing two different ways, those are classical 
methods and metaheuristic methods. Some of the 
methods like gradient descent are examples of 
classical methods and these are easier to implement.

4
 

However, the drawback of these traditional 
approaches is time-consuming and accuracy also 
depends on the type of variables, conditions, and 
objective function of the solved problem. To avoid the 
drawbacks of traditional methods, metaheuristic 
algorithms are turning into a significant piece of 
current advancement.

5
 The biological and physical 

behaviour in nature is emulated by these algorithms. 
There is a wide scope of development of 
metaheuristic algorithms for global search. The search 
process can be guided by these metaheuristic 
algorithms, which use an intelligent learning 
mechanism. Prominent nature-inspired metaheuristic 
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procedures are Particle Swarm Optimization (PSO), 
Differential Evolution (DE), Artificial Bee Colony 
(ABC), Bat Algorithm (BA), Ant Lion Optimizer 
(ALO), Ant Colony Optimization (ACO), Genetic 
Algorithm (GA), Harmony Search algorithm (HS), 
Cuckoo Search algorithm (CS), Fruit fly Optimization 
Algorithm (FOA), Moth-Flame Optimization (MFO) 
and Grey Wolf Optimizer (GWO). 

In this study, we have considered GWO as a meta-

heuristic optimizing algorithm. This optimizer is 

centred on the control hierarchy and chasing 

mechanisms of grey wolves. The three main steps of 

hunting include searching for the quarry, encircling 

the quarry, and attacking the quarry are used to 

accomplish the optimization. The main goal of this 

approach is to update the present points of wolves in 

the discrete searching space so that we can get the 

finest feature for enhanced classification results. It is 

proved that the GWO gives improved results in most 

of the trials when it is equated with other meta-

heuristic optimizing techniques. In some of the 

situations, it also shows deprived performance and 

trap in local minima, as it depends on heuristics. So to 

deal with such kind of situations hybrid algorithms 

are the most suitable with their high range of 

exploration and exploitation phases. A hybrid 

algorithm is a set of rules that integrates two or 

further different algorithms that can find the solution 

for a similar problem, both picking one or moving 

among them over the direction of a set of rules.
6,7

 The 

main goal of such hybrid techniques are to mitigate 

the respective flaw of specific algorithms, possibly 

integrate exceptional algorithms collectively, or 

beautify an algorithm with one-of-a-kind 

techniques.
8,9

 The goal of this research is to design the 

hybrid approach CGWO, in which diverse chaotic 

systems are cast to interchange the crucial constraints 

of GWO, which aids in switching GWO's local and 

global searching abilities, and to propose a 

mathematical model of grey wolf leadership hierarchy 

and chasing mechanisms in nature. Further, the 

suggested hybrid CGWO approach is used to train 

Multi-Layer Perceptron (MLP) to get the minimum 

training error and maximize the accuracy of 

prediction and classification rate. 
 

Literature Review 

This section comprehends the detailed 
investigation of GWO and its various variants using 

chaotic functions. GWO is a population-based meta-
heuristic approach stimulated by natural wolf packs 

proposed by Mirjalili et al.
10 

in 2014. The author 
explained the algorithm by going through the three 

main stages of the hunt: searching, encircling, and 
attacking the prey. Also, they have mitigated classical 

engineering problems using the proposed method. In 

2015, Seyedali Mirjalili
11

 used the GWO algorithm 
for training Multi-layer perceptrons. He utilized 

standard datasets including function approximation 
and classification to benchmark the analysis of the 

performance of his work and he compared these 

results with some other evolutionary training 
algorithms. Mirjalili et al.

12
 suggested Multi-objective 

GWO in 2015, which is a unique algorithm for multi-
criterion optimization. This paper illustrated that to 

optimize complications with numerous objectives, the 
Multi-Objective GWO (MOGWO) can be used. In 

2015, An Automatic generation control of a multi-

area ST-thermal power System using GWO based on 
classical controllers was proposed by Sharma & 

Saikia where he proved that GWO optimized PID 
controller’s achievement is coming in a superior way 

than other optimizing techniques in terms of settling 

time.
13 

In 2017, Rodriguez et al. presented a fuzzy 
hierarchical operator in GWO. This work deals with 

the performance of GWO while a modern hierarchical 
operator is incorporated into the GWO algorithm. The 

introduced variable is a hierarchical transformation 
that is stimulated by the social hierarchy of wolves 

pack. It has been proved that the results taking the 

largest impression in GWO are based on the usage of 
fuzzy logic.

14 
Song et al. published a paper on GWO 

for constraint assessment in surface waves in the year 
of 2015. The research was unique and commanding 

surface wave dispersion curve inversion scheme so-

called GWO. In this work, it is substantiated that this 
strategy is benchmarked on different data such as 

noise-free, field, and noisy data. These results are 
compared with other contemporary algorithms.

15 

Kohli et al. introduced a chaotic GWO algorithm for 
constrained optimization glitches. He has assimilated 

chaotic theory with GWO to get better results in 

global convergence. In this, the CGWO is equated 
with standard GWO and also with contemporary 

approaches. Here, the result was validated by using 
some constrained engineering problems.

16
 In 2018, 

Saxena et al. applied β chaotic map with GWO. In 

this publication, the balanced bridging technique 
depends on exploiting β-chain chaos to improve 

GWO. The control vector of this GWO is combined 
with the chaotic β chain to improve exploration and 

exploitation efficiency and the applicability of the 
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proposed variable is equated with two realistic 
complications.

17 
Mitic et al. in 2016 applied this 

CGWO for learning and imitation of robot movement 
paths. In this, he explained the novel approach that 

combines knowledge from demonstration procedures 

and muddled optimization to replicate the desired 
motion paths. In this, four various chaotic techniques 

were designed CBA, CFA, CAPSO, and CGWO. This 
GWO algorithm was tested on benchmark problems 

with the help of using ten well-defined chaotic 

maps.
18

 In 2018, Heidari & Abbaspour used this 
CGWO to solve realistic complications. In this, a 

fresh chaotic calculation was introduced in GWO to 
make the agents move a chaotic sequence towards a 

randomly specified wolf. The performance of 
enhanced GWO was equated with other six optimizers 

which are from CEC-2011.
19

 In the year 2020, Panda 

& Majhi attempted to resolve complicated real-world 
problems by training various neural networks starting 

from MLP to higher-order neural networks (HONN) 
in terms of contemporary hybrid metaheuristic 

approaches.
20,21

 In the process they have cast off 

recent evolutionary techniques like STS and OBL 
with swarm-based approaches such as SSA and SHO 

to develop an improved hybrid version of the same to 
deal with ongoing problems.

22,23
 GWO is also utilized 

with CNN to deal with image data effectively, 
recently Mohakud & Dash proposed a GWO-based 

CNN model to categorize skin cancer from specified 

input images. From the experimentation, the author 
claimed that the GWO-CNN model has the potential 

to deal with image data.
24 

In modern days, due to the 
increase in problem complexity, the hybridized 

algorithms perform better in terms of better 

convergence rate, avoidance of local optima trap and 
suitable for a superior trainer. Hence the recognition 

of such kinds of algorithms is evolving day by day. 
 

Framework of GWO 
 

Inspiration 

Mirjalili et al. proposed this algorithm in the year 

2014.
(10)

 This algorithm is centred on representing the 

guidance hierarchy and hunting process of grey 

wolves in the wild. In the wild, these wolves are 

habitual to live in a pack. The average wolf pack size 

is 5 to 12 animals. These wolves can be of four types 

based on their strength in every pack. The social 

hierarchy of the grey wolves can be organized into 

four ways. The alpha wolves (𝛼): Forerunners are 

male or female, entitled alphas. Alpha is mainly 

responsible for choices regarding hunting, resting 

places, waking times, etc. These alphas will 

acknowledge the remaining wolves in the clan. The 

alpha wolf is also known as the leading wolf because 

its orders must be obeyed by the clan. He is the best 

and strongest member of the group. Beta wolf (β): 

These are the second level of the pyramid. These 

betas are the helpers who support Alpha in 

policymaking or any other happenings in the clan. He 

will obey the alpha's orders and act as an advisor to 

the alpha and a disciplinarian for the clan. Deltas 

wolves (δ): These are the third level of hierarchy in 

the clan. If a wolf does not belong to alpha, beta, or 

omega, then these are named deltas. Deltas must obey 

alphas and betas and simultaneously guide the omega 

wolves. Omega wolves (ω): These are at the lowest 

hierarchical level within the clan. These wolves act as 

scapegoats. They must always report to all other 

wolves. 
 

Mathematical Model and Algorithm 

To perform optimization and design the GWO 

procedure, the chasing method and the societal 

pyramid of wolves are mathematically modelled. The 

proposed scientific representations of the societal 

pyramid, tracking, encircling, and attacking prey are 

as per the following. In the GWO algorithm, the 

optimization is guided by alpha (𝛼), beta (β), and 

delta (δ). The omega (ω) wolves will be followed by 

these three wolves in the hierarchy. The prey during 

hunting can be encircled by these grey wolves. 

Mathematically to model the behaviour of encircling, 

we use the following equations: 
 

𝐷   =  𝐶 ⋅     𝑋 𝑝 𝑡 − 𝑋  𝑡                  ... (1) 
 

𝑋  𝑡 + 1 = 𝑋 𝑝 𝑡 − 𝐴 ⋅ 𝐷                  ... (2) 
 

where, t specifies the present reiteration, 𝐴  and 𝐶  are 

coefficient vectors, 𝑋 𝑝  is the position vector of the 

prey, and 𝑋  designates the position vector of a grey 

wolf. 
 

𝐴 = 2𝑎 ⋅ 𝑟 1 ⋅ 𝑎                  ... (3) 

𝐶 = 2 ⋅ 𝑟 2                 ... (4) 
 

where, constituents of 𝑎  are linearly declined from 2 

to 0 during iterations and 𝑟1, 𝑟2 are random vectors 

within 0,1 . 
 

Hunting 

To mathematically model the hunting behaviour of 

wolves, we use the first 3 finest results which are 
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gotten so far and constrain other wolves to renew their 

locations according to the location of the finest wolf. 

Here we use Eq. 5 & 6 to update the positions of 

search agents. 
 

𝐷   ∞ =  𝐶 1 ⋅ 𝑋 ∞ − 𝑋  , 𝐷    𝛽 =  𝐶 2 ⋅ 𝑋 𝛽 − 𝑋  ,𝐷   𝛿 =

 𝐶 3 ⋅ 𝑋 𝛿 − 𝑋                   ... (5) 
 

𝑋 1 = 𝑋 ∞𝐴 1 ⋅  𝐷   ∞ , 𝑋    2 = 𝑋 𝛽𝐴 2 ⋅  𝐷   𝛽  , 𝑋 3 = 𝑋 𝛿𝐴 3 ⋅

 𝐷   𝛿                    ... (6) 
 

𝑋  𝑡 + 1 =
𝑋  1+𝑋  2+𝑋  3

3
                ... (7)  

 

Using these above equations, all the search agents 

will alter their locations according to the locations of 

alpha, beta, and delta in the search region. Here alpha, 

beta, and delta wolves will assess the location of the 

target, and the remaining agents can alter their 

locations arbitrarily around the prey. Here the hunting 

of prey can be completed by attacking the prey. 

Approaching the prey can be modelled 

mathematically by decreasing the value of 𝑎     , where a 

decreases from 2 to 0 over the iterations. Here 𝐴  is 

also decreased by 𝑎  and it is having random values in 

between the range of  −2𝑎, 2𝑎 . Grey wolves mostly 

search as per the location of alpha, beta, and delta. 

They wander from one another to look for prey and 

combine to assault prey. Here 𝐶 vector, which is a 

component of GWO contains random values in  0, 2 . 
The random behaviour throughout optimization  

can be shown in GWO because of this vector 𝐶.  

The pseudo-code for GWO is stated in Table 1. 
 

Chaos Technique 

Chaos theory is a part of science concentrating on 

the investigation of chaos states of dynamical 

systems. Chaos can be demarcated as a phenomenon 

where any small change in its preliminary condition 

leads to a non-linear change in the forthcoming 

behaviour. Edward Lorenz was the first pioneer of 

this concept. The deterministic laws control the 

random states of disorder and inconsistencies in 

dynamical systems. These deterministic laws have a 

major role in chaos techniques, which are highly 

delicate to basic conditions. Little changes in 

introductory conditions, for example, those because of 

measurements in estimation or because of adjusting 

mistakes in numerical calculation can return broadly 

wandering results for such dynamical systems, 

knowing longstanding predictions of their behaviour 

is generally not necessary. It may happen with 

dynamic systems which are naturally deterministic 

and cannot be anticipated. The future properties of 

these dynamical systems will always follow a 

particular expansion, and these are determined by 

their input conditions, without complex stochastic 

factors. This character is called simply chaos or 

deterministic chaos. The meaning of a deterministic 

system is one in which no stochastic nature is taking 

part in the development of further states of the 

system. According to the summary of chaotic 

behaviour which is explained by Edward Lorenz
25

, the 

nature of chaos is present in a lot of usual systems, 

comprising fluid flow, heartbeat abnormalities, 

weather, and climate. In some systems which are 

having artificial mechanisms, such as the stock 

market and highway traffic, this chaotic behaviour 

occurs spontaneously.
26–29

 The nature of these chaotic 

systems is initially predictable for some time and after 

that, it appears to become random. There are three 

factors based on which the total time that the 

behaviour of a chaotic system can be effectually 

predicted. Those things are a time scale depending on 

the dynamics of the system which is called the 

Lyapunov time, how much uncertainty can be 

endured in the calculation, and how precisely its 

present state can be estimated. At the point when 

important predictions can’t be made, the system 

seems arbitrary. 
 

Proposed CGWO Algorithm 

Chaos is a mathematical technique that has 

received enormous attention among researchers  

due to its underlying associated randomness and 

Table 1 — Pseudocode representation of GWO algorithm 

Algorithm 1 Pseudocode illustration of GWO 

Configure the grey-wolf populace Yi ( cnt = 1, 2, ..., n) 

Set a, A, and C 

Compute the fitness of individual search-agent 

𝑋𝛼 =finest search-agent 

𝑋𝛽 =second finest search-agent 

𝑋𝛿 =third finest search-agent 

while ( iterc < Max count of recapitulations) 

  for each independent search-agent 

Alter the location of the present search-agent using the previously 

mentioned equations 

  end for 

 Alter a, A, and C 

 Compute the fitness of entire search-agents 

 Alter 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿  
 iterc=iterc+1 

end while 

return 𝑋𝛼 
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irregularities. However such states are controlled by 

defined patterns and deterministic regulations which 

are extremely inclined towards initial constraints. A 

chaotic technique is frequently used with optimization 

engineering, as it uses various chaotic parameters to 

approximate. Due to the advantages of non-recurrence 

and haphazardness, the entire search process can be 

carried out in a superior manner within the search 

region in contrast to other techniques which also 

depend on possibilities. To enhance the ability of GWO 

to find global optimum along with improving the 

convergence rate, we have incorporated the technique 

of chaos with GWO. Due to the underlying dynamic 

nature of chaos, it boosts the capability of any chosen 

metaheuristic approach for achieving optimum within 

the search region. Out of 12 available chaotic map 

functions we have chosen the Logistic map function 

and applied it further for realistic applications. A 

variety of chaotic maps with various formulas can be 

used to bring chaos into optimization methods. Since a 

decade ago, chaotic maps have been gaining popularity 

in the optimization field due to their dynamic 

behaviour, which aids optimization algorithms in 

examining the search space more thoroughly. Of the 

available chaotic maps, many of them have been 

utilized the same to mitigate a wide range of real-world 

complex applications. To enhance the efficacy of the 

GWO approach, we have integrated the chaos 

technique with GWO, and the hybrid version of the 

proposed method is considered a Chaotic Grey Wolf 

Optimization (CGWO) algorithm. The initial value can 

be taken from the range of [0,1] in any chaotic map. 

Here we have taken the initial value as 0.6. In this 

work, the model is centred on the common S-curve 

logistic function that displays how a populace advances 

gradually, at the point quickly, before tightening as it 

arrives at its conveying limit. Here we used the logistic 

function which is one of the chaotic functions. It uses a 

differential equation that treats time as regular. This 

condition characterizes the guidelines or rules of our 

framework: here n signifies the populace at some 

random time x, and p signifies the growth or 

development rate. Here, we have taken the initial value 

of nx as 0.6 as it should be in the range of [0,1]. The 

development rate p-value as 0.5 is taken here as the 

range of the growth rate can be in the range of 0 to 4. 

The pseudo-code for GWO is stated in Table 2. 
 

nx+1 = pnx(1- nx)     ... (8) 
 

Evaluation of CGWO over Standard Constrained 

Functions 

The outcomes obtained by CGWO over 23 

standard benchmark functions are presented in  

Table 3. The diverse performance measures achieved 

from these benchmark functions set have been 

introduced as max, min, median, mean, and Standard 

Deviation (SD). The benchmark dimensions utilized 

are minimization methods and can be separated into 

four kinds. Those are unimodal, multi-modal,  

and fixed-measurement multi-modal. In those 23 

benchmark functions, F1 to F7 are the category  

of  unimodal,  F8 to F13 are  under   the  category   of 

Table 2 — Pseudocode representation of suggested Chaotic-GWO (CGWO) algorithm 

Algorithm 2 Pseudocode illustration of CGWO 

Initialize the variable iterc and arbitrarily configure the populace of grey wolves where (cnt=1, 2..., n) 

Configure the value of the chaotic map 𝑥0arbitrarily 

Configure constraints a, A and C 

Compute the fitness of each Wolf 

𝑋𝛼 = finest wolf 

𝑋𝛽 = second finest wolf 

𝑋𝛿 =third finest wolf 

while (iterc< Max_recapitulations ) 

 Sort the populace of grey wolves rendering their fitness 

Configure the chaotic number using the chaotic map equation (Eq. 8) 

 for each independent search-agent 

   Alter the position of the present wolf using Eq. 5 

 end for 

Configure constraints a, A, C 

Compute fitness of entire wolves.  

 Alter𝑋𝛼, 𝑋𝛽, 𝑋𝛿 
Substitute the worst fit wolf with the finest fit wolf iterc=iterc+1 

 End while 

 return𝑋𝛼 
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Table 3 — Unimodal, Multimodal and Fixed Dimension Multimodal Benchmark Functions 

Unimodal Benchmark Functions 

Function Dimension Range fmin 

𝑓1 𝑥 =  𝑥𝑖
2

𝑛

𝑖=1

 
30 [−100,100] 0 

𝑓2 𝑥 =   𝑥 +   𝑥𝑖 
𝑛

𝑖−1

𝑛

𝑖=1

 
30 [−10,10] 0 

𝑓3 𝑥 =  ( 𝑥𝑗  

𝑖

𝑗−1

𝑛

𝑖=1

)2 
30 [−100,100] 0 

𝑓4 𝑥 = 𝑚𝑎𝑥𝑖  𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛  30 [−100,100] 0 

𝑓5 𝑥 =   [100(𝑥𝑖+1 

𝑛−1 

𝑖=1

−𝑥1
2)2 +   𝑥𝑖 − 1 2  

30 [−30,30] 0 

𝑓6 𝑥 =  ([𝑥𝑖

𝑛

𝑖=1

+0.5])2 
30 [−100,100] 0 

𝑓7 𝑥 =  𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚 0,1  
30 [−1.28,1.28] 0 

Multimodal Benchmark Functions 

𝑓8 𝑥 =  𝑥𝑖

𝑛

𝑖−1

sin⁡(  𝑥𝑖 ) 
30 [−500, 500] 418.9829X5 

𝑓9 𝑥 =  [𝑥1
2

𝑛

𝑖=1

− 10 cos 2𝜋𝑥𝑖 + 10] 
30 [−5.12,5.12] 0 

𝑓10 𝑥 = −20 𝑒𝑥𝑝  −0.2 
1

𝑛
 𝑥1

2

𝑛

𝑖=1

 − 𝑒𝑥𝑝  𝑐𝑜𝑠 2𝜋𝑥𝑖 

𝑛

𝑖=1

 + 20 + 𝑒 

30 [−32,32] 0 

𝑓11 𝑥 =
1

4000
 𝑥1

2

𝑛

𝑖=1

− 𝑐𝑜𝑠
𝑛

𝑖=1
 (
𝑥𝑖

 𝑖
 )  + 1 

30 [−600, 600] 0 

𝑓12 𝑥 =  
𝜋

𝑛
 10 sin(𝜋𝑦𝑖 + (𝑦1−

𝑛−1

𝑖−1

1)2 1 + 10 sin2 𝜋𝑦𝑖+1  +  𝑦𝑛 − 1)2  

+  𝑢(𝑥𝑖 , 10,100,

𝑛

𝑖−1

 4  

𝑦𝑖 = 1 +
𝑥𝑖 − 1

4
 

𝑢 𝑥𝑖 , 𝑎, 𝑘,𝑚 =  

 𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
 0 − 𝑎 < 𝑥𝑖 < 𝑎

 𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎

  

 

30 [−50, 50] 0 

𝑓13 𝑥 = 0.1 sin2(3𝜋𝑦𝑖 + (𝑥1−

𝑛

𝑖=1

1)2 1 + sin2 3𝜋𝑥𝑖+1  

+  𝑥𝑛 − 1)2  1 + 𝑠𝑖𝑛2  2𝜋𝑥𝑛    +  𝑢

𝑛

𝑖−1

 𝑥𝑖 , 5,100,4  

30 [−50, 50] 0 

𝑓14 𝑥 = − sin(𝑥𝑖 ) .  sin(
𝑖. 𝑥𝑖

2

𝜋
 )2𝑚 ,𝑚 = 10

𝑛

𝑖=1

 
30 [0, 𝜋] −4.687 

𝑓15 𝑥 =  𝑒 −  
𝑥𝑖
𝛽
 

2𝑚
𝑛

𝑖=1

 − 2𝑒 −  𝑥𝑖
2 ∙ 𝑐𝑜𝑠2𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

, 𝑚 = 5 
30 [−20,20] −1 

    

   (Contd.) 
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Table 3 — Unimodal, Multimodal and Fixed Dimension Multimodal Benchmark Functions (Contd.) 

Multimodal Benchmark Functions 

𝑓16 𝑥 =    sin2(𝑥𝑖 )] − 𝑒𝑥𝑝 − (

𝑛

𝑖=1

 𝑥𝑖 
2

𝑛

𝑖=1

 − 𝑒𝑥𝑝 −   𝑥𝑖
2

𝑛

𝑖=1

  

∙ 𝑒𝑥𝑝  − 𝑠𝑖𝑛2

𝑛

𝑖=1

  𝑥1   

30 [−10,10] −1 

Fixed Dimension Multimodal Benchmark Functions 

𝑓17 𝑥 =(𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)2 + 10 1 −

1

8𝜋
 cos 𝑥1 + 10 2 [−5,5] 0.398 

𝑓18 𝑥 =  1 +  𝑥1 + 𝑥2 + 1 2 19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2  
∗  30 +  2𝑥1 − 3𝑥2 

2

∗  18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2   

2 [−2,2] 3 

𝑓19 𝑥 =  [𝑐𝑖

4

𝑖=1

exp( −  𝑎𝑖𝑗  (

3

𝑖=1

𝑥𝑗 − 𝑝𝑖𝑗 )2 ) 

3 [1,3] −3.86 

𝑓20 𝑥 =  [𝑐𝑖

4

𝑖=1

exp( −  𝑎𝑖𝑗  (

6

𝑖=1

𝑥𝑗 − 𝑝𝑖𝑗 )2 ) 

6 [0,1] −3.32 

𝑓21 𝑥 =  [  𝑋 − 𝑎𝑖 
5
𝑖=1   𝑋 − 𝑎𝑖 

T + 𝑐𝑖] 
−1 4 [0,10] −10.1532 

𝑓22 𝑥 =  [  𝑋 − 𝑎𝑖 
7
𝑖=1   𝑋 − 𝑎𝑖 

T + 𝑐𝑖] 
−1 4 [0,10] −10.4028 

𝑓23 𝑥 =  [  𝑋 − 𝑎𝑖 
10
𝑖=1   𝑋 − 𝑎𝑖 

T + 𝑐𝑖] 
−1 4 [0,10] −10.5363 

 

multi-modal functions, and the remaining is the type 
of fixed-dimension multi-modal functions.

17
 

Improved outcome by suggested CGWO method over 
GWO, across all types of considered benchmark 
problems signifies the supremacy of said suggested 
method in terms of exploitation and exploration 
capability, which leads to smoother attainment  
of a global peak. In the conveyed consequence, the 

proposed CGWO method reveals enhanced 
magnitudes in comparison to GWO, setting up its 
better competency for acceptance globally. The 
consequences attained are illustrated in Table 4. The 
convergence curves of the CGWO approach over the 
GWO approach utilizing benchmark functions are 

presented in Fig. 1. The y-axis of the curve shows the 
results obtained for the standard functions, and the  
x-axis shows the number of possible repetitions of the 
experiment. CGWO's convergence curve is smoother 
than the GWO curve, indicating that it is more 
effective in reaching the optimal peak. 

The extensive acceptance of any algorithm is 
possible only when it requires the least amount of 
time for its execution. Hence we have equated  
the worst-case time complexity of CGWO with 
GWO. The initialization of the populace takes 
𝑂 𝑛 ∗ 𝑑 , where n indicates populace size and d 

signifies the dimension of the problem. Fitness 
computation requires time as 𝑂 𝑛 ∗ 𝑑  time. So, worst 
case time complexity of CGWO is 𝑂 𝑛 ∗ 𝑑 ∗
𝑀𝑎𝑥𝑟𝑒𝑐𝑎𝑝𝑖𝑡𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠, where Max_recapitulations 
denotes the maximum count of reiterations. 

Comparison among Contemporary Metaheuristic Algorithms 
There is a significant difference among the various 

metaheuristic algorithms in terms of design and the 

amount of control boundaries. Every algorithm has its 

controlling parameters and flow of control in terms of 

structural depiction. Contrasting the proposed CGWO 

and other metaheuristic techniques, there might be no 

impact but while finding the solutions for complex 

problems and assessing their achievements, there will 

be some unique nature will take place. These 

assessments will depend on some classic benchmark 

functions which are unimodal, composite, hybrid, and 

multimodal sets. With the assistance of these classic 

benchmark functions and by taking six techniques that 

are MFO
31

, SCA
32

, ALO
33

, SSA
30

, GWO
10,

 and 

proposed CGWO, the results have been fixed. The 

proposed method affirms its incomparability over the 

remaining compared techniques. Acquired outcomes 

are represented in Table 5. 
 

Non-Parametric Analysis for Performance Estimation 
Non-parametric analysis is required to estimate the 

noteworthy distinction among various metaheuristic 

algorithms. The total insights of population size and 

no particular presumptions are required by this non-

parametric test. In this current investigation, Friedman 

and Holm's test is accomplished.
 
The Friedman test is 

a class of non-parametric assessment in nature, which 

is part of insights that do not rely exclusively upon 

defined groups of likelihood dissemination. It was 

first created by Milton Friedman. Like the parametric  
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Fig. 1 — Convergence curve obtained from benchmark functions. 
 

Table 4 — Mean, median, SD, and maximum error value, minimum error value acquired from benchmark functions. Improved 

consequences marked bold 

Benchmark Functions Algorithm Mean Median Std. Dev. Min Error Max Error 

1 GWO 7.71E+04 7.34E+04 6614.11 7.31E+04 8.47E+04 

 CGWO 6.90E+04 6.80E+04 2754.02 6.69E+04 7.21E+04 

2 GWO 5.85E+10 1.73E+10 772388 1.06E+10 1.48E+11 

 CGWO 4.01E+08 4.39E+08 127022.1 2.59E+08 5.04E+08 

3 GWO 1.87E+05 1.71E+05 43090.55 1.55E+05 2.36E+05 

 CGWO 1.41E+05 1.43E+05 29324.29 1.11E+05 1.70E+05 

4 GWO 9.32E+01 9.24E+01 2.35 9.14E+01 9.59E+01 

 CGWO 8.81E+01 8.87E+01 2.54 8.53E+01 9.03E+01 

5 GWO 2.82E+08 2.82E+08 335267.28 2.48E+08 3.16E+08 

 CGWO 2.41E+08 2.24E+08 4612073.27 2.05E+08 2.93E+08 

6 GWO 7.62E+04 7.94E+04 6529.21 6.87E+04 8.05E+04 

      (Contd.) 
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Table 4 — Mean, median, SD, and maximum error value, minimum error value acquired from benchmark functions. Improved 

consequences marked bold (Contd.) 

Benchmark Functions Algorithm Mean Median Std. Dev. Min Error Max Error 

 CGWO 6.90E+04 7.23E+04 11926.97 5.58E+04 7.89E+04 

7 GWO 1.78E+02 1.75E+02 12.66 1.66E+02 1.91E+02 

 CGWO 1.55E+02 1.60E+02 12.60 1.41E+02 1.65E+02 

8 GWO −4.04E+03 −5.42E+03 2445.83 −5.49E+03 −1.22E+03 

 CGWO −4.13E+03 −5.45E+03 2356.72 −5.53E+03 −1.41E+03 

9 GWO 4.38E+02 4.38E+02 8.19 4.30E+02 4.46E+02 

 CGWO 4.25E+02 4.27E+02 5.59 4.18E+02 4.28E+02 

10 GWO 2.06E+01 2.06E+01 0.55 2.00E+01 2.11E+01 

 CGWO 2.05E+01 2.05E+01 0.53 2.00E+01 2.10E+01 

11 GWO 5.20E+02 5.20E+02 19.97 5.00E+02 5.40E+02 

 CGWO 5.13E+02 5.17E+02 17.56 4.94E+02 5.28E+02 

12 GWO 6.15E+08 5.95E+08 812238.67 5.45E+08 7.04E+08 

 CGWO 5.42E+08 5.08E+08 1153578.9 4.48E+08 6.71E+08 

13 GWO 1.54E+09 1.50E+09 2427020 1.32E+09 1.80E+09 

 CGWO 8.95E+08 1.14E+09 7025109 1.03E+08 1.44E+09 

14 GWO 1.53E+01 1.40E+01 5.25 1.08E+01 2.11E+01 

 CGWO 5.73E+00 7.21E+00 3.76 1.45E+00 8.55E+00 

15 GWO 6.14E-01 5.62E-01 0.20 4.40E-01 8.41E-01 

 CGWO 1.73E-01 2.12E-01 0.07 8.23E-02 2.24E-01 

16 GWO 2.50E+00 2.62E+00 1.49 9.50E-01 3.94E+00 

 CGWO 3.67E-01 8.95E-01 0.91 −6.90E-01 8.97E-01 

17 GWO 4.16E+00 3.28E+00 2.42 2.29E+00 6.90E+00 

 CGWO 1.68E+00 1.16E+00 1.09 9.52E-01 2.94E+00 

18 GWO 7.71E+01 1.01E+02 45.76 2.43E+01 1.05E+02 

 CGWO 6.95E+01 9.00E+01 41.45 2.18E+01 9.68E+01 

19 GWO −6.39E-01 −3.00E-01 0.85 −1.62E+00 −1.01E-03 

 CGWO −7.62E-01 −3.13E-01 1.06 −1.97E+00 −7.09E-05 

20 GWO −3.30E-01 −3.15E-01 0.09 −4.35E-01 −2.39E-01 

 CGWO −1.08E+00 −1.05E+00 0.27 −1.37E+00 −8.24E-01 

21 GWO −4.07E-01 −4.78E-01 0.12 −4.80E-01 −2.64E-01 

 CGWO −5.82E-01 −6.42E-01 0.10 −6.48E-01 −4.55E-01 

22 GWO −5.27E-01 −5.37E-01 0.16 −6.87E-01 −3.57E-01 

 CGWO −6.61E-01 −7.10E-01 0.20 −8.35E-01 −4.39E-01 

23 GWO −6.30E-01 −6.55E-01 0.12 −7.35E-01 −4.99E-01 

 CGWO −8.97E+02 −1.21E+00 1551.31 −2.69E+03 −8.64E-01 
 

Table 5 — Result acquired from proposed CGWO equated with contemporary metaheuristic techniques over considered 23 benchmark 

functions. Improved consequences marked bold 

Benchmark Functions MFO SCA ALO GWO CGWO 

1 8.48E+4 8.27E+4 9.09E+4 7.71E+04 6.90E+04 

2 6.18+10 5.99E+10 6.09E+10 5.85E+10 4.01E+08 

3 2.12E+5 1.90E+5 1.64E+6 1.87E+05 1.41E+05 

4 2.09E+2 1.69E+2 2.7E+2 9.32E+01 8.81E+01 

5 2.03E+10 2.66E+9 1.99E+9 2.82E+08 2.41E+08 

6 1.29E+5 8.61E+4 6.66E+5 7.62E+04 6.90E+04 

7 −2.01E+2 −2.01E+2 −6.19E+0 1.78E+02 1.55E+02 

8 −3.97E+3 −4.01E+3 −3.69E+3 −4.04E+03 −4.13E+03 

9 4.69E+2 4.7E+3 3.6E+3 4.38E+02 4.25E+02 

10 4.79E+1 4.03E+1 2.10E+1 2.06E+01 2.05E+01 

     (Contd.) 
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Table 5 — Result acquired from proposed CGWO equated with contemporary metaheuristic techniques over considered 23 benchmark 
functions. Improved consequences marked bold 

Benchmark Functions MFO SCA ALO GWO CGWO 

11 5.98E+2 6.1E+2 5.19E+2 5.20E+02 5.13E+02 
12 7.25E+8 6.22E+8 2.02E+9 6.15E+08 5.42E+08 
13 1.7E+9 1.62E+9 9.05E+8 1.54E+09 8.95E+08 
14 2.19E+1 2.24E+1 2.01E+1 1.53E+01 5.73E+00 
15 1.1E-1 1.06E-1 1.13E-1 6.14E-01 1.73E-01 
16 1.09E+2 3.25E+0 3.19E+0 2.50E+00 3.67E-01 
17 6.11E+0 5.7E+0 4.2E+0 4.16E+00 1.68E+0 
18 1.06E+2 1.01E+2 9.1E+1 7.71E+01 6.95E+01 
19 −3.88E-1 −3.42E-1 −3.91E-1 −6.39E-01 −7.62E-01 
20 −1.03E+0 −1.06E+0 −1.01E+0 −3.30E-01 −1.08E+00 
21 −1.88E-1 −2.63E-1 −1.31E-1 −4.07E-01 −5.82E-01 
22 −3.55E-1 −4.68E-1 −3.22E-1 −5.27E-01 −6.61E-01 
23 −5.16E-1 −5.02E-1 −6.11E-1 −6.30E-01 −8.97E+02 

 

rehashed measures such as ANOVA, it is utilized to 
identify the contracts in treatments over various test 
endeavours. This test is used to examine different 
results that came from various metaheuristic 
algorithms. The assumed null hypothesis is expressed 
as 𝐻଴ stated as, 𝐻଴ can be evaluated by every 
metaheuristic algorithm and there is no significant 
difference among all those optimizing techniques. The 
significance level  is taken as 0.05 to evaluate the 
hypothesis. In this mathematical analysis, each 
metaheuristic approach is assigned a performance 
level that can be limited between the spectrums of 1 
to T. Based on the outcome attained from the classic 
objective method, this ranking is distributed. The 
average performance level 𝐴𝑣𝑔௥can be calculated by 
using Eq. (9).  
 

𝐴𝑣𝑔௥ ൌ
்௢௧௔௟ ௔ௗௗ௜௧௜௢௡ ௢௙ ௔௟௟ ௥௔௡௞௦ ௔௧௧௔௜௡௘ௗ ௙௥௢௠ ௖௢௡௦௜ௗ௘௥௘ௗ ௖௟௔௦௦௜௙௜௘௥௦

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௗ௔௧௔௦௘௧௦

                  ... (9) 
 

Friedman statistics can be calculated by using  
Eq. (10) 

𝐹𝐷௦ ൌ
ሺ்ିଵሻ௑ಷ

మ

்ሺ஼஼ିଵሻି൫௑ಷ
మ൯

              ... (10)  

 

where, 𝑋ி
ଶ ൌ

ଵଶ்

஼஼∗ሺ஼஼ାଵሻ
ቂ∑ ሺ𝐴𝑣𝑔௥ሻଶ௥ െ

஼஼∗ሺ஼஼ାଵሻమ

ସ
ቃ 

 

Here, 𝑇 represents the number of benchmarked test 
functions and 𝐶𝐶 represents the number of 
metaheuristic optimization classifiers. The statistics of 
Friedman 𝐹𝐷௦ is propagated by consulting the F-
distribution withሺ𝐶𝐶 െ 1ሻ 𝑎𝑛𝑑 ሺ𝐶𝐶 െ 1ሻ ∗ ሺ𝑇 െ 1ሻ 
degree of freedom. In this, 23 classic benchmark 
functions and five optimization techniques have been 

engaged to calculate the degree of freedom which will 
be under the limit of 4 to 88. The witnessed value of 
𝐹ሺ4, 88ሻ with ∝ൌ 0.05 is 5.6581.34 If and only if the 
outcome of 𝐹𝐷௦ is lesser than the examined critical 
significance, then the assumed null hypothesis can be 
accepted. Otherwise, the null hypothesis will be 
rejected. If the null hypothesis is acknowledged, it 
represents that there exists no clear divergence among 
all the castoff techniques. The dismissal of the 
hypothesis specifies that some dissimilarity exists 
amongst all the chosen techniques. After 
implementing the Friedman test, if the rejection of the 
null hypothesis has ensued, some other test will be 
conducted which is termed as Holms strategy. The 
main objective of the Holms Test is to prove that the 
results of the implemented method are preferable in 
comparison with other optimizing techniques. 
Here, 𝐻଴is used to express the null hypothesis. The 
combination of techniques that are compared executes 
uniformly. In this Holms Test, we need 𝑌 value. This 
𝑌 value can be calculated using Eq. (11). 
 

𝑌 ൌ
஺ோ೛ି஺ோ೎

஼௏
               ... (11) 

 

where, 𝐶𝑉 ൌ ට஼஼ሺ஼஼ାଵሻ

଺∗்
 

where, 𝐴𝑅௣ 𝑎𝑛𝑑 𝐴𝑅௖signifies the average rank of 
proposed as well as compared classifiers and 
𝐶𝑉indicates computed value. Depending on the 
tabular form of the normal distribution that is 
depending on the calculated 𝑌value the value of 
probability 𝑃௩௔௟ is calculated.35 Based on the outcome 
of the comparison between the𝑃௩௔௟  𝑎𝑛𝑑 

∝

ሺ஼஼ି௜ሻ
values, 

it will then be further decided whether the null 
hypothesis is recommended or excluded. If all the 
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attained 𝑃𝑣𝑎𝑙  will be smaller than 
∝

 𝐶𝐶−𝑖 
values, then it 

can be described as the rejection of the hypothesis 

which means the proposed approach leads a guiding 

technique relating to competence. The average rank 

obtained from considered techniques and results 

observed from Holm’s test are presented in  

Table 6 & 7. 
 

Application of CGWO for Training MLP 

In the space of artificial intelligence and 

computational insight, neural networks are the most 

significant method. In the year 1943, neural networks 

were first reported. Neural systems are an 

arrangement of calculations that refers to the neurons 

of a human cerebrum that are intended to predict 

unknown patterns. There are various types of Neural 

Networks in writing, for example, Learning Vector 

Quantization (LVQ), Spiking Neural Networks 

(SNN), Radial Basis Function (RBF) neural networks, 

Feed Forward Neural Networks (FFNN), and Higher 

Order Neural Networks (HONN). In this study 

Multilayer Perceptron (MLP) is introduced which is a 

type of feed-forward artificial neural network. MLP is 

an example of a supervised learning technique and is 

utilized for the grouping and regression of a few sorts 

of N-dimensional problems. In MLP, there should be 

at least 3 layers of nodes and those are the input layer, 

a hidden layer, and an output layer. The hidden layer 

is the transitional layer, which is available in the 

middle of the input layer and yield layer. MLP's major 

task is to use an activation function to process the 

input that was handled by the previous layer. The 

variable (ω) is a wolf has a higher tendency toward 

(𝛼), (β), and (δ), respectively. This means that the 

next position of (ω) is a wolf is close to α and β. That 

is, the contribution α-wolf in redefining weights and 

Table 6 — Rank acquired from proposed CGWO and contemporary metaheuristic techniques over considered 23 benchmark functions. 

Improved consequences marked bold 

Castoff Function MFO SCA ALO GWO CGWO 

1 8.48E+04(4) 8.27E+04(3) 9.09E+04(5) 7.71E+04(2) 6.90E+04(1) 

2 6.18+10(5) 5.99E+10(3) 6.09E+10(4) 5.85E+10(2) 4.01E+08(1) 

3 2.12E+05(4) 1.90E+05(3) 1.64E+06(5) 1.87E+05(2) 1.41E+05(1) 

4 2.09E+02(4) 1.69E+02(3) 2.7E+02(5) 9.32E+01(2) 8.81E+01(1) 

5 2.03E+10(5) 2.66E+09(3) 1.99E+09(4) 2.82E+08(2) 2.41E+08(1) 

6 1.29E+05(4) 8.61E+04(3) 6.66E+05(5) 7.62E+04(2) 6.90E+04(1) 

7 −2.01E+02(1.5) −2.01E+02(1.5) −6.19E+00(3) 1.78E+02(5) 1.55E+02(4) 

8 −3.7E+03(5) −4.01E+03(3) −3.9E+03(4) −4.04E+03(2) −4.13E+03(1) 

9 4.69E+02(3) 4.7E+03(5) 3.6E+03(4) 4.38E+02(2) 4.25E+02(1) 

10 4.79E+01(5) 2.10E+01(3.5) 2.10E+01(3.5) 2.06E+01 (2) 2.05E+01 (1) 

11 5.98E+02(4) 6.1E+02(5) 5.19E+02(2) 5.20E+02(3) 5.13E+02(1) 

12 7.25E+08(4) 6.22E+08(3) 2.02E+09(5) 6.15E+08(2) 5.42E+08(1) 

13 1.7E+09(5) 1.62E+09(4) 9.05E+08(2) 1.54E+09(3) 8.95E+08(1) 

14 2.19E+01(4) 2.24E+01(5) 2.01E+01(3) 1.53E+01(2) 5.73E+00(1) 

15 1.1E-01(4) 1.06E-01(5) 1.13E-01(3) 6.14E-01(1) 1.73E-01(2) 

16 1.09E+02(5) 3.25E+00(4) 3.19E+00(3) 2.50E+00(2) 3.67E-01 (1) 

17 6.11E+00(5) 5.7E+00(4) 4.2E+00(3) 4.16E+00(2) 1.68E+00(1) 

18 1.06E+2(5) 1.01E+2(4) 9.1E+01(3) 7.71E+01(2) 6.95E+01(1) 

19 −3.88E-01(4) −3.42E-01(3) −3.91E-01(5) −6.39E-01(2) −7.62E-01(1) 

20 −0.03E+00(4) −1.06E+00(5) −1.01E+00(3) −3.30E-01(2) −1.08E+00(1) 

21 −1.88E-01(4) −2.63E-01(3) −1.31E-01(5) −4.07E-01(2) −5.82E-01(1) 

22 −3.55E-01(4) −4.68E-01(3) −3.22E-01(5) −5.27E-01(2) −6.61E-01(1) 

23 −5.16E-01(4) −5.02E-01(5) −6.11E-01(3) −6.30E-01(2) −8.97E+00(1) 

𝑨𝒗𝒈𝒓 4.19 3.65 3.80 2.17 1.17 
 

Table 7 — Outcomes generated from Holm’s Test 

Rank Classifiers 𝑌 − 𝑣𝑎𝑙𝑢𝑒 𝑃𝑣𝑎𝑙  ∝

 𝐶𝐶 − 𝑖 
 

Hypothesis 

1 MFO −6.47 0.00004 0.0125 Disallowed 

2 SCA −5.31 0.00004 0.0166 Disallowed 

3 ALO −5.64 0.00004 0.025 Disallowed 

4 GWO −2.14 0.0157 0.05 Disallowed 
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biases ω Wolves is the best. Hence the Weights and 

biases are updated and approach optimality leading to 

enhanced MLP in each iteration. The concept of 

concern is used to fix the optimum quantity of 

neurons and hidden layers. In this, the learning task 

maps an input layer to an output layer based on 

example input-output pairs. MLP assesses the training 

data and produces a derived function that is used to 

map upcoming examples. The goal of MLP is to 

correctly determine the class labels for unseen data. 

The weights of individual connections in MLP can be 

modified during training. The main effort of MLP 

trainers is to train the MLPs by looking for the ideal 

loads and to get the maximum accuracy for 

incomprehensible examples of given inputs. To gain 

exactness, we have to fine-tune the parameters of the 

MLP after a specified number of reiterations.
 
After the 

training process, this model is very useful for 

predicting unknown patterns. The architecture of 

MLP is depicted in Fig. 2. 

The output can be measured by employing 

Eq. (12). 

𝑎𝑘 = 𝑊𝑘𝑖
𝑑
𝑖=1 ∗ 𝑋𝑖 + 𝑒𝑘 , 𝑘 = 1,2,…𝑚  ... (12) 

[ 

where, the value of 𝑚 infers the direct 

amalgamations of constraints that fit the 1
st
 layer, 𝑑 

connotes 𝑑 amount of magnitudes as input and 𝑎𝑘
refers to the consequence from 𝑖𝑡𝑕  hidden neuron,

𝑊𝑘𝑖 refers to associated weights, 𝑋𝑖  refers 𝑖𝑡𝑕  amount

of inputs and 𝑒𝑘  refers to biases. The diverse

initiations transform by a single activation function 

which is considered to be sigmoid and depicted in 

Eqs. (13–15).  

𝑆𝑑𝑖 =
1

 1+𝑒𝑥𝑝  −𝑎𝑘 
 ... (13) 

Ultimately the output can be calculated as, 

𝑎𝑕 =   𝑊𝑖𝑕 ∗ 𝑎𝑖 + 𝑒𝑕 , 𝑕 = 1,2,… ,𝑚𝑕
𝑖=1  ... (14) 

where, 𝑊𝑖𝑕 refers to weights from hidden nodes to 𝑕𝑡𝑕

yield node. 

𝑂𝑛 =
1

 1+𝑒𝑥𝑝  −𝑎𝑕  
 ... (15) 

The fundamental concern with gradient and other 

traditional formulating algorithms is that they can 

become stuck in confined optima and have a sluggish 

convergence rate, prompting the creation of 

metaheuristic-based neural network formulating 

algorithms. The MLP is trained using the suggested 

CGWO algorithm. The weights and biases are 

initially selected randomly which are required for the 

parameters for MLP. To get superlative accuracy in 

terms of classification, we have to pass a set of initial 

values which are preferred arbitrarily. These weights 

and biases can be identified using Eq. (16-17). 

𝑊    = 𝑊1,1,𝑊1,2,𝑊1,3, … ,𝑊𝑖,𝑗  ... (16) 

𝐵  = 𝑏1 , 𝑏2 , 𝑏3 , … , 𝑏𝑛  ... (17) 

where, 𝑊𝑖,𝑗 signifies weights and𝑏𝑛signifies biases.

Afterward providing the preliminary constraints, we 
must develop the set of arbitrarily produced constraint 

lists numerous times to calculate the efficacy of MLP. 
After measuring MLP's efficacy, the Root-Mean-

Square-Error (RMSE) can be computed. The gap 

between the actual value acquired from the model, i.e. 
MLP, and the goal value after completing the required 

number of iterations can be calculated as RMSE. 
Aside from RMSE, features such as average RMSE 

and standard deviation may be computed from RMSE 

values, and these can be obtained by iterating the 
parameters repeatedly throughout the MLP. The 

organization of MLP for dissimilar datasets is 
presented in Table 8. 

To ensure a fair distinction between the 
metaheuristic algorithms under consideration, we 

have established a search agent count of 20 and a 

maximum iteration count of 100. To achieve a 
minimum RMSE, we have taken into account 10 

distinct outcomes. The average and standard deviation 
were computed by analysing the 10 RMSE values 

obtained. The efficiency of the proposed model has 

been assessed by using six customary datasets, 
chosen from the UCI storehouse to solve practical 

problems.
36

 Those datasets are Liver, Cancer, 
Balloon, Iris, Diabetes, and Heart. Here, an improved 

CGWO is used to train MLP. The results have 
equated with some other metaheuristic algorithms 

those are DE, GA, GWO, PSO, and SSA. Fig. 2 — Elementary Arrangement of MLP 
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Simultaneously, the outcome is affirmed with CGWO 
alongside other available algorithms, concerning 

diverse estimates like min, RMSE, average, and Std. 
Dev, error rate, sensitivity, specificity, accuracy, and 

prevalence. Improved accuracy is evidence about the 

supplemented ability of CGWO, regarding better 
prevention of local optima trap. Lower RMSE, STD, 

and higher average prove the better exploitable 
strength. The accomplished outcomes are given in 

Tables 9 & 10. 

Table 8 — Depiction of Customary datasets and MLP construction 

Castoff  

Dataset 

Attributes  

Count 

Training Samples  

Count 

Test Samples  

Count 

Count of  

classes 

MLP  

structure 

Iris 4 150 30 3 4-4-1 

Balloon 4 20 16 2 9-9-1 

Cancer 9 683 120 2 8–8-1 

Heart 13 270 60 2 13-13–1 

Liver 6 345 70 2 4-4-1 

Diabetes 8 768 150 2 6-6-1 
 

Table 9 — Performance Assessment of CGWO concerning DE, GWO, GA, PSO, and PSO 

Dataset/Algorithm CGWO DE GA GWO PSO SSA 

Liver Optimum RMSE 0.4875 0.5001 0.4901 0.4977 0.5001 0.5011 

AVG 0.5558 0.2213 0.2200 0.2001 0.2123 0.3011 

ST. DEV 0.0568 0.0201 0.0100 0.0220 0.0212 0.0401 

SENSITIVITY 0.6 0.7001 0.6201 0.9102 0.8076 0.7021 

SPECIFICITY 0.7 0.4999 0.5311 0.5001 0.5001 0.5911 

PREVALENCE 45.58 34.11 31.01 39.99 42.22 32.99 

Cancer Optimum RMSE 0.3546 0.2632 0.2798 0.3102 0.3332 0.3812 

AVG 0.4239 0.2901 0.2902 0.4102 0.4021 0.3998 

ST. DEV 0.0412 0.0198 0.0040 0.0499 0.0301 0.0213 

SENSITIVITY 1 1 1 1 1 1 

SPECIFICITY 0.8 0.8999 0.9234 0.9234 0.9234 0.9234 

PREVALENCE 56.66 50 50 50 50 50 

Heart Optimum RMSE 0.3642 0.5012 0.5002 0.4001 0.4796 0.4901 

AVG 0.5202 0.4922 0.4734 0.3931 0.4818 0.4821 

ST. DEV 0.0129 0.0101 0.0040 0.0088 0.0034 0.0090 

SENSITIVITY 0.85 0.8030 0.8222 0.8622 0.8799 0.7865 

SPECIFICITY 0.7 0.75 0.81 0.76 0.67 0.831 

PREVALENCE 53.70 41.01 39.98 41.88 45.33 39.01 

Diabetes Optimum RMSE 0.4591 0.4511 0.4666 0.5001 0.4609 0.5101 

AVG 0.6364 0.4444 0.4611 0.4866 0.4698 0.4701 

ST. DEV 0.0747 0.0030 0.0050 0.0080 0.0078 0.0041 

SENSITIVITY 0.9 0.7984 0.7912 0.7935 0.7946 0.7988 

SPECIFICITY 0.4 0.6811 0.6199 0.6511 0.5803 0.6911 

PREVALENCE 71.42 41.22 43.23 42.13 44.01 42.13 

Balloon Optimum RMSE 0.2915 0.4311 0.5021 0.3923 0.4199 0.4999 

AVG 0.3213 0.2233 0.5011 0.4124 0.4498 0.5113 

ST. DEV 0.094 0.0202 0.0032 0.0298 0.0201 0.0099 

SENSITIVITY 0.8 1 1 1 1 1 

SPECIFICITY 1 1 1 1 1 1 

PREVALENCE 40 50 50 50 50 50 

Iris Optimum RMSE 0.1755 0.2001 0.1999 0.1818 0.2166 0.2323 

AVG 0.4793 0.2199 0.2122 0.1999 0.2298 0.2802 

ST. DEV 0.0112 0.0201 0.0049 0.0133 0.0171 0.0381 
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Conclusions 

The introduced CGWO is an extension of GWO 
that integrates the concepts of chaos theory into 
GWO. Its effectiveness is confirmed by using it to 
solve the constrained problems set. It also performs a 
comparative assessment against several recently 

introduced meta-heuristics, such as PSO, GE, GWO, 
and SSA, to examine overall performance levels. The 
findings of the experiments reveal that using 
deterministic chaotic signals instead of linearly 
declining values is a significant modification of the 
GWO method, which outperforms other cast-off 

procedures. Based on the experimental consequences 
of various benchmark functions, we find that the 
proposed method performs well in most cases and 
achieves an improved convergence rate and accuracy 
compared to SSA and other considered methods. 
Moreover, performing statistical analysis using a 

variety of statistical tests confirms significant 
differences between results obtained with CGWO and 
some state-of-the-art techniques. Further, the 
suggested CGWO is cast off with MLP as a suitable 
classifier, for benchmark data classification. Observed 
outcomes signify its effectiveness as a better trainer 

algorithm, in terms of reduced error rate and hence 
improved accuracy. 

In the future, the suggested CGWO can be utilized 

to resolve discrete optimization problems, as well as 

to train other higher-order neural networks to serve as 

a superior trainer algorithm and to analyse image data 

with CNN. 
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