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Deep learning approaches rely on a wide-scale labeled dataset to attain a high level of performance. Although labeled 
data is more difficult and costly to access in some applications, such as bioinformatics and medical imaging, wide variety of 
ongoing research on the topic of Semi-Supervised Deep Learning (SSDL) can improve and fix underlying problems in this 
domain. The motivation for the suggested model Rank Based Two-Stage Semi-Supervised Deep Learning (RTS-SS-DL) is 
the same as how doctors deal with unobserved or suspect cases in day to day practice. The physicians deal with these 
suspect instances with the help of professional assistance from their colleagues. Before beginning therapy, some patients 
seek the opinion of a variety of skilled professionals. The patients are treated by the most appropriate (vote count) 
professional diagnosis. Our model (RTS-SS-DL) has achieved impressive metrics including 92.776% accuracy, 97.376% 
specificity, 86.932% sensitivity, 96.192% precision, 85.644% MCC (Matthews Correlation Coefficient), 3.808% FDR 
(False Discovery Rate), 2.624% FPR (False Positive Rate), 91.072% f1-score, 90.85% NPV (Negative Predictive Value), 
and 13.068% FNR (False Negative Rate) for the unseen dataset. The outcome of this research results in an SSDL model that 
is both more precise and effective. 

Keywords: Labeled dataset, RTS-SS-DL, Self-organising classifier, Semi-supervised learning, Shoulder’s fracture
classification

Introduction 
In today’s era, Semi-Supervised-Deep-Learning 

(SS-DL) has been identified as a promising new 
research pathway in the computer vision domain. The 
notion of SS-DL initially emerged in the 1970s.1–3 the 
motivation behind using SS-DL in medical dataset is 
to enhance the efficiency and accuracy of machine 
learning models used for medical image analysis. 
Medical imaging is a critical area of healthcare, with 
imaging techniques such as X-rays, MRI scans, and 
CT scans used to diagnose and monitor a wide range 
of diseases and conditions. However, obtaining large 
amounts of labeled medical image data can be 
challenging, as it often requires expert annotation and 
can be time-consuming and expensive.4 This can limit 
the effectiveness of supervised learning approaches 

that rely on large labeled datasets. SS-DL provides a 
way to leverage both labeled and unlabeled medical 
image data to train machine learning models. By 
using unlabeled data in conjunction with labeled data, 
the model can learn more generalize-able features that 
are useful for detecting patterns and abnormalities in 
medical images. This can lead to better accuracy and 
generalize-ability of the models, as well as reducing 
the amount of labeled data needed for training. 
Overall, SS-DL has the potential to enhance the 
efficiency and effectiveness of medical imaging 
analysis, ultimately leading to better patient outcomes 
and more efficient use of healthcare resources. With 
regard to medical imaging tasks, Semi-Supervised 
Learning (SSL) may use unlabeled data to enhance 
model performance. However, pseudo-labeling-based 
semi-supervised approaches have two issues with 
medical image datasets: the models' predictions are 
biased towards the majority class in unbalanced 
datasets, and the loss of useful information occurs 

—————— 
*Author for Correspondence
E-mail: pawankumar.mall@gmail.com,
vipulupsainian2470@gmail.com



MALL et al.: AN APPROACH TOWARD TAGGING UNLABELED MEDICAL DATASET 819

when unlabeled data with confidence below the 
thresholds are discarded. FullMatch is a unique SSL 
architecture that utilizes all unlabeled input to 
improve the model's performance in order to address 
these problems.6 The prominent SSDL research works 
and its application implementation in Deep Learning 
Model (DLM) minimize the shortage of labeled data 
need in the quest for a more data-efficient deep 
learning approach. Semi-supervised learning can be a 
powerful approach in medical imaging, as it can help 
to overcome the challenges of limited labeled data 
and enhance the accuracy and generalize-ability of 
models. However, it is important to carefully evaluate 
the performance of the model on both the labeled and 
unlabeled data to ensure that it is generalizing well 
and not simply over-fitting to the labeled data. The 
SSDL framework is shown in Fig. 1. 

We have introduce a new rank-based two-stage 
SSDL model. The suggested  (RTS-SSDL) 
framework enhance SS-DL models performance. The 
research findings demonstrate that the RTS-SSDL 
model performs significantly better than the 
conventional models and produces sufficient 
classification results. A comparison chart of different 
ensemble learning techniques is given in Table 1. 

It's important to note that the strengths and 
weaknesses listed above are generalizations and may 
vary depending on the specific implementation and 
dataset used. The choice of ensemble learning 
technique should always be based on careful 
experimentation and evaluation. 

We have proposes a novel SS-DL model for the 
classification of X-ray images. The major finding of 
the article can be given as follows: 

Rank-based semi-supervised learning: The paper 
introduces a novel rank-based semi-supervised 
learning approach that the standard DLM are re-
trained with the both pseudo dataset by each models. 
The model ranks the labeled samples and utilizes 
them to supervise the model's training, while the 
unlabeled samples are used to improve the model's 
representation learning. 

Two-stage learning: The suggested model consists 
of two stages: pre-training and fine-tuning. The pre-
training stage uses the unsupervised learning method 
to learn the underlying representation of the X-ray 
images. The fine-tuning stage utilizes both labeled 
and unlabeled samples to fine-tune the pre-trained 
model for classification. 

The future scope of the presented model includes 
its application to other medical imaging tasks, such as 

Table 1 — Comparison chart of different ensemble learning techniques 

Ensemble Learning 
Technique 

Base Models Strengths Weaknesses 

Bagging Any model Reduces variance and overfitting, improves accuracy, works 
well with unstable models like decision trees 

Can be computationally expensive 

Boosting Weak models Can improve accuracy of weak models, works well with high 
bias and low variance models like decision stumps 

Can overfit and be 
computationally expensive 

Stacking Any model Can improve accuracy of individual models, works well with 
models that have complementary strengths and weaknesses 

Can be computationally expensive 

Random Forest Decision trees Reduces variance and overfitting, works well with datasets 
with many features 

Can be computationally expensive 

Gradient Boosting Weak models Can improve accuracy of weak models, works well with 
datasets with few features 

Can overfit and be 
computationally expensive 

AdaBoost Weak models Can improve accuracy of weak models, adapts to  
misclassified samples 

Can overfit and be 
computationally expensive 

Voting Any model Simple and easy to implement, can work well with models  
that have different strengths and weaknesses 

May not improve accuracy if all 
models are similar 

Fig. 1 — Details of semi supervised deep learning 
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CT and MRI image classification. Additionally, the 
suggested rank-based SS-DL approach can be 
extended to other DLM and applications beyond 
medical imaging, where labeled data is scarce or 
expensive to obtain. The model's architecture and 
training methodology can also be further optimized to 
improve its scalability and efficiency for real-world 
deployment. 

Related Work 
SSDL is a well-known research area in medical 

images that aims to develop techniques to leverage 
unlabeled data for training DLM. SSDL has gained 
significant attention in recent years due to the 
growing need for large labeled datasets, which are 
often time-consuming and expensive to obtain.5–7

There are several popular SSDL techniques that have 
been developed, including: 

Self-Training: In this technique, a model is trained 
on labeled data and then used to generate predicted 
labels for unlabeled data.6–9 The predicted labels are 
treated as if they were true labels, and the model is 
retrained on the labeled and pseudo-labeled data.8–11 

Co-Training: This technique is used when there are 
two or more modalities of data available. Two 
separate models are trained on different modalities of 
the data, and each model is used to generate predicted 
labels for the other modality.10 The predicted labels 
are then used as if they were true labels for the other 
modality, and the models are retrained on the labeled 
and pseudo-labeled data.12 

Semi-Supervised Generative Adversarial Networks 
(GANs): GANs are a type of deep learning model that 
can be trained on both labeled and unlabeled data. 
The generator part of the GAN is trained on the 
unlabeled data to generate synthetic data that is 
similar to the labeled data. The discriminator part of 
the GAN is trained on both the labeled and synthetic 
data to distinguish between the two.13 

The use of SSDL techniques in DLM has been 
shown to be effective in alleviating the requirement 
for labeled data. The SSDL has been successfully 
applied in a wide range of applications, including 
image recognition, speech recognition, and natural 
language processing.14 

Theoretical Considerations for the Suggested 
Model 

Dataset 
One of the biggest collections of medical X-rays 

data of the bones is the musculoskeletal radiograph 

dataset. The dataset includes X-rays from January 
2014 to December 2017 covering a period of four 
years at hospital, as well as a total of 58817 pictures 
from 21456 radiography case studies. The patients 
had an average age of 7.2 years, and 57% of them 
were male. Total X-ray images of the bones total 
40561 in the (MURA) musculoskeletal radiograph. 
The collection contains 55.63% normal and 44.36% 
abnormal X-ray images.  From the MURA dataset, we 
only took into account the shoulder study; as a result, 
the new dataset is now known as MURA-SU for our 
experiment 8942 train set and 194 test set. HATA-SU 
dataset is collected from HATA CHC train set 
contains 598 records and unseen 681 records for the 
test set, under supervision of Dr. Prashant Kumar 
Mall, Dr. Richa Singh and Dr. Siddharth Jaiswal from 
Kushinagar district. Both the dataset are detailed in 
Table 2. 

Deep Learning Benchmark Models 
The following is a succinct description of the key 

technical elements of the benchmark DLM as 
depicted in Fig. 2: 

a) MobileNet
Mobilenet is a lightweight model.15 The model was

developed to resolves few hardware-related 
challenges, including power, energy, and limited 
memory. The model works on the concept of depth-
wise separable convolutions.  

b) Pre-Act ResNet
The pre-activation resnet model16 Pre-Act ResNet

is a type of DNN architecture used for image 
classification tasks. It is an improvement over the 
traditional ResNet architecture, which was introduced 
in 2015 by researchers at Microsoft. In Pre-Act 
ResNet, the order of batch normalization and 
activation functions is changed compared to the 
traditional ResNet architecture. Specifically, in Pre-
Act ResNet, batch normalization is applied before the 
activation function, whereas in traditional ResNet, the 
activation function is applied before batch 

Table 2 — The MURA-SU X-ray and HATA-SU dataset details 

Dataset Train Set Test Set 

MURA-SU 8942 (Normal Abnormal) 194 (Normal Abnormal) 
HATA-SU 
(unlabeled) 

598 0

HATA-SU 
(unseen) 

0 681(Normal-381, 
Abnormal-300) 

Total Size:10415 
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normalization. The main benefit of this modification 
is that it allows for better gradient flow during 
training. By applying batch normalization before the 
activation function, the normalization process is less 
likely to "wash out" the signal from the activation 
function, resulting in better learning and improved 
accuracy. Pre-Act ResNet has been shown to outperform 
traditional ResNet architectures on a number of 
benchmark datasets for image classification, including 
CIFAR-10, CIFAR-100, and ImageNet. 

c) ResNet18
The ResNet-18(17) is a 18 layers deep. The ResNet

design was devised, along with the concept of "skip 
connections." Residual connections allow parameter 
gradients to propagate relatively smoothly from the 
output layer to the network's prior layers, facilitates a 
train of more deep networks. 

d) VGG-16
VGG-16(18) VGG-16 is an architecture that

comprises 16 layers. VGG-16 is renowned for its 
uncomplicated and graceful design, as well as its 
exceptional performance in recognizing images. It set 
the highest benchmark in a competition that gauges 

the performance of computer vision models on a 
large-scale image dataset.  

e) VGG-19
VGG-19(19) has been widely used as a benchmark

model in computer vision tasks, such as image 
classification, object detection, and image segmentation. 
The network's pertained weights have been made 
publicly available and have served as a starting point for 
many other deep learning applications.20 

Proposed Work 
In the medical field, diagnosing patients using costly 

equipment and the input of multiple healthcare 
professionals to label data is a costly process. Our 
suggested model has six different stages: pre-processing 
images, determining rank, creating the model, 
generating a pseudo dataset, retraining DLM, and 
evaluating performance. The most important aspect of 
our framework is determining the rank of the benchmark 
DLM and retraining it with both labeled and pseudo 
datasets. Finally, the effectiveness of the suggested 
model is validated using the HATA-SU dataset, which 
has not been previously used. The working of the 
suggested framework is illustrated in Fig. 3. 

 

Fig. 2 — Structure of: (a) MobileNet, (b) Pre-Act ResNet, (c) ResNet-18, (d) VGG-16, (e) VGG-19 
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Research Environment 
The investigation was conducted in a digital setting 

utilizing a virtual machine. The primary virtual 
machine runs on an Ubuntu operating system, with a 
RAM of 14 GB and ten virtual CPUs derived from the 
AMD Ryzen 7 4800H GHz processor. The suggested 
model was implemented using Python 3.0. 
Image Preprocessing 

Pre-processing X-ray image normalization is the 
process of scaling pixel values to a standardized 
range. It helps to eliminate variations in illumination 
conditions and ensures that images have consistent 
intensity distributions. Common normalization 
methods include min-max scaling and z-score 
normalization. Images are often resized or scaled to a 
standard size or resolution to ensure consistency in 
further analysis. This can be achieved by resampling 
the image into 64×64. 

Rank Determination 
This stage in determining DLM rankings is crucial. 

Our suggested ranking method concentrates on 
elements of various DLM' training accuracy 
(Train_acc), test accuracy (Test_acc), and training 
time (Elsp_train_time). A threshold-based ranking 
algorithm is used to establish the model's rating. 

Algorithm 1: Procedure for the Threshold based Ranking among 
the Standard DLM: 

INPUT: Trainୟୡୡ, Testୟୡୡ, Elsp୲୰ୟ୧୬౪ౣ
, 

RankTrainୟୡୡ, RankTestୟୡୡ, 𝑅ankElsp୲୰ୟ୧୬_time, 𝑁 

OUTPUT: Rankሾ ሿ 

Initialization; 
Train_acc = Train accuracy, 
Test_acc= Test accuracy, 
Elsp_train_time = Training time elapsed, 
RankTrain_acc = Rank Train accuracy, 
RankTest_acc = Rank Test accuracy 
𝑅𝑎𝑛𝑘ா௦_்௧ = Rank Training time elapsed 
𝑁 = Number of deep learning model 
Rankሾ ሿ= Rank assign to deep learning model 
1. 𝛼 ൌ ∑ 𝑇𝑟𝑎𝑖𝑛/𝑁ே

ୀଵ  * Compute train
threshold*/ 

2. 𝛽 ൌ ∑ 𝑇𝑒𝑠𝑡/𝑁ே
ୀଵ  /* Compute test threshold*/ 

3. 𝛾 ൌ ∑ 𝐸𝑙𝑠𝑝்௧/𝑁ே
ୀଵ  /* Compute elapsed 

threshold*/ 
4. For i=1 to N do  /* Compute rank for N deep

learning model*/
5. If  𝐸𝑙𝑠𝑝்௧ ൏ 𝛾/* Compare Elasp train time

with threshold*/
6. Rankሾiሿ ൌ  𝑅𝑎𝑛𝑘ா௦_்௧ሾ𝑖ሿ/* Assign

elapsed train time rank to model rank*/
7. If 𝑇𝑒𝑠𝑡  𝛽 /* Compare test accuracy with test

threshold */
8. Rankሾiሿ ൌ  𝑅𝑎𝑛𝑘௧௦௧_ሾ𝑖ሿ /* Assign test rank to

model rank*/
9. If  𝑇𝑟𝑎𝑖𝑛  𝛼 /* Compare train accuracy with

train threshold*/

Fig. 3 — Diagram illustrating the working of suggested framework 
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10. Rankሾiሿ ൌ  𝑅𝑎𝑛𝑘்_ሾ𝑖ሿ  /* Assign train rank
to model rank*/

11. Else
12. Rankሾiሿ ൌ  𝑅𝑎𝑛𝑘ா௦_்௧ሾ𝑖ሿ /* Assign 

elapsed train time rank to model rank*/
13. End For

Note: In case of tie between ranking priority is
𝑅𝑎𝑛𝑘ா௦_்௧, 𝑅𝑎𝑛𝑘𝑇𝑟𝑎𝑖𝑛, 𝑅𝑎𝑛𝑘𝑇𝑒𝑠𝑡  

Model Generation 
The model generation stage is crucial part of our 

suggested model. The inspiration behind the 
suggested model (RTS-SSDL) is the same as how 
doctors deal with the unobserved cases in the day to 
day life. The doctors tackle these unseen cases based 
on expert advice from their colleagues. Some patients 
seek the advice of several professional specialists 
before starting the treatment. The patients follow 
treatment according to maximum (vote count) expert 
diagnoses. In this study, five standards DLM are 
considered for the experiment. The suggested 
algorithm 2 is used for the two stage rank based 
model generation model. The detailed proposed 
structure is shown in Fig. 4. 

Algorithm 2: Procedure for the two Stage Rank based Model 
Generation 

INPUT: 𝑈𝑑, N, M_Rank [], M  
OUTPUT:𝑃𝑑𝑝𝑚 
Initialization; 
𝑈𝑑 = Unlabled dataset, 

𝑁 = Number of Standard Deep learning model, 
M_Rankሾሿ =Array of Standard Deep learning 
modelssorted according to ascending order, 
𝑀 = Size of unlable dataset, 
fusion_classiϐier_Rank =Deep learning models 
MDM= Master DL model 
𝑃𝑑_MDM = Pseudo_dataset 
GENERATE_PSEUDO_LABEL () method to 
generate pseudo label 
1. For k=1 to 3 do    /* Compute Pseudo dataset for
three models*/

2. Fusion_classifier_Rank[k] ={M_Rank[k], 
M_Rank [4], …... M_Rank[N]} /*Generate Three sub 
model according to top three Rank */ 

3. 𝑃𝑑_Fusion_classifier ← 
GENERATE_PSEUDO_LABEL (𝑈𝑑, Fusion  _ 
classifier_Rank[k]) 

4. End for
5. MDM [] =logisticRegression 

{Fusion_classifier_Rank [1], Fusion_classifier_Rank 
[2], Fusion_classifier_Rank [3]} 

6. 𝑃𝑑_ MFC ← GENERATE_PSEUDO
_LABEL (𝑈𝑑, MFC []} 

Generate Pseudo Dataset 
This step aims to label a pseudo medical data for 

the unlabeled HATA-SU data. The pseudo data are 
label based on the vote total, and the label with the 
highest votes serves as the pseudo label for both 
suggested and traditional models. The fake dataset is 
produced using technique 3 in a step-by-step fashion. 

Fig. 4— Suggested semi-supervised rank based two stage deep learning model 
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Algorithm 3: Procedure for Pseudo Label Generation for 
Unlabeled Dataset
INPUT: 𝑼𝒅, N, M_Rank [], M 
OUTPUT:𝑷𝒅𝒑𝒎 
Initialization; 
𝑈𝑑 = Unlabled dataset, 
𝑁 = Number of Standard Deep learning model, 
M_Rankሾሿ=Array of Standard Deep learning models 
sorted according to ascending order, 
𝑀 = Size of unlable dataset, 
Fusion_classiϐier_Rank =Set of deep learning models 
𝑃𝑑𝑝𝑚 = Pseudo dataset, 
GENERATE_PSEUDO_LABEL (𝑈𝑑, 
Fusion_classifier_Rank []) 
1. M                    𝐶𝑙𝑎𝑠𝑠2 

End for 

Re-train the DML with Pseudo Data and MURA-SU 

At this stage, the conventional DLM is re-trained 
using both the pseudo dataset and the MURA-SU 
(RTS-SS-DL) proposed model. 

Validation of suggested Model 
The effectiveness of the (RTS-SSDL) suggested 

model is evaluated and validated in the final stage of the 
experiment using an unseen dataset called HATA-SU. 

Evaluation and Validation 
The suggested framework assessment and 

validation are detailed in the following sections. 

DML Evaluations 
This tool is a popular Statistical measure, which 

generates tabular reports of the number of wrong and 
right predictions. The four key terminologies related 
to confusion matrix are TP (True Positive) is right 
predictions of positive label, TN (True negative) is 
right predictions of negative label, FP (False positive) 
is wrong predictions of positive label, and FN (False 
negative) is wrong predictions of negative label.24 The 
vital performance metrics are as follows: 

a) Sensitivity (SENS)
The SENS is a measurement of the number of right

positive predictions divided by the total positive’s 
instances. It is sometimes referred to as the recall or 
true positive rate. The highest sensitivity is 1.0, and 
the lowest is 0.0. The 'Sensitivity' is calculated as 
shown in Eq. (1): 

SENS ൌ ்

்ାிே
... (1) 

b) Specificity (SPEC)
The SPEC is measured as the number of correct

negative predictions divided by the total number of 
negatives instances. It is sometimes referred to as true 
negative rate. The ‘Specificity’ is calculated as shown 
in Eq. (2): 

SPEC ൌ ்ே

ிା்ே
... (2) 

c) Precision (PREC)
The PRECis predicted as positive. The ‘Precision’

is calculated as shown in Eq. (3): 

PREC ൌ ்

்ାி
... (3) 

d) Negative Predictive Value (NPV)
The NPV is the probability that the prediction is

correct if the prediction is negative. The ‘Negative 
Predictive Value'is calculated as shown in Eq. (4): 

𝑁𝑃𝑉 ൌ ்ே

்ேାிே
... (4) 

e) False Positive Rate (FPR)
The FPR is measure as the total wrong positive

predictions divided by the total negatives instance. 
The ‘False Positive Rate’ is calculated as shown in 
Eq. (5): 

𝐹𝑃𝑅 ൌ ி

ிା்ே
... (5) 

f) False Discovery Rate (FDR)
The FDR is defined as the predicted percentage of

false positives across all proclaimed significant 
results.21 The ‘False Discovery Rate’ is calculated as 
shown in Eq. (6): 

𝐹𝐷𝑅 ൌ ி

ிା்
... (6) 

g) False Negative Rate (FNR)
The FNR is also known as the miss rate, is the

likelihood that the test will miss a real positive. The 
purpose of a classification model is not to bound the 
false positive rate. The ‘False Negative Rate’ is 
calculated as shown in Eq. (7) as follows: 

𝐹𝑁𝑅 ൌ ிே

ிேା்
... (7) 

h) Accuracy (ACC)
The ACC22 refers to how close a measurement is to

its true value. This metric parameter is used when the 
True negatives and True Positives are more vital.22 
The ‘Accuracy’ is calculated as shown in Eq. (8): 
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𝐴𝐶𝐶 ൌ ்ା்ே

்ା்ேାிାிே
... (8)  

i) F1 Score (F1)
The highest value of the F1score indicates perfect 
recall and precision, and the lowest F1 score value is 
0, which indicates that either precision or recall value 
is zero, this metric parameter is used when the False 
Positives and False Negatives are important.23–25 The 
‘F1 Score’ is calculated as shown in Eq. (9): 

𝐹1 ൌ ଶ்

ଶ்ାிାிே
... (9) 

j) Matthews Correlation Coefficient (MCC)
The MCC explains how modifying the value of a

variable affects the value of another and returns value in 
the range of −1 and 1. The value 1 denotes a perfect 
prediction, 0 denotes an inability to return any reliable 
information, and −1 denotes total inconsistency among 
both observations and prediction.26 The ‘Matthews 
Correlation Coefficient’ is calculated as shown in Eq.: 

𝑀𝐶𝐶 ൌ
ሺ்ൈ்ேିிൈிேሻ

ሺ௦௧ሺ்ାிሻൈሺ்ାிேሻൈሺ்ேାிሻൈሺ்ேାிேሻሻሻ
     ... (10) 

Rank Determination among DMLs 
The SS-DL models might be more accurate We 

carried out a number of tests using a medical image 
dataset to look into and assess the performance of our 
proposed method. The standard DML, such as 
MobileNet, ResNet18, VGG19, and VGG16, Pre-Act 
Resnet18 are trained and assessed from the ground up. 
The detail performance of standard DLM rank 
evaluation is presented in Table 3. The training 
accuracy of the standard models is shown in Fig. 5 
and that of the test accuracy of standard DML in 
Fig. 6. 

Re-train the Models using both Label and Pseudo Dataset 
In this stage, the standard DLM are retrained with 

the combined MURA-SU and pseudo dataset 
generated by each standard DLM and our suggested 
model. In the next stage, validation of these trained 
models will be performed on the HATA-SU unseen 
dataset. 

Validation of Propose Model on Unseen HATA-SU Dataset 
The performance of the proposed model is 

evaluated and validated in the last step of the 
experiment using an unpublished dataset called 
HATA-SU. To evaluate the performance, the 
validation procedure is carried out in numerous 
steps. The results are depicted in Table 4. On the 
HATA-SU unseen dataset, we evaluate the 
conventional DLM's performance in the first section 
without using any semi-supervised learning 
techniques. The average measure for standard DLM 
such as 27.784% ACC, 7.874% SPEC, 53.068% 
SENS, 30.626% PREC, −44.932 % MCC, 69.374% 

Table 3 — Detail performance of standard DLM rank evaluation 

Models Top 1 Train 
Accuracy 

Top 1 Test 
Accuracy 

Training Time 
for 20 Epoch 

Rank 

MobileNet 59.65 64.43 41 Minutes 52 
Seconds 

1 

PreActResNet18 70.78 71.13 127 Minutes 51 
Seconds 

5 

ResNet18 71.29 72.68 121 Minutes 39 
Seconds 

4 

VGG16 72.88 71.64 70 Minutes 5 
Seconds 

2 

VGG19 72.76 72.16 81 Minutes 9 
Seconds 

3 

Threshold value 
(Average) 

69.47 70.40 88 minutes 31 
second 

— 

Fig. 5 — Standard DLM train accuracy 
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Fig. 6 — Test accuracy of standard DLM 

Table 4 — Suggested model result evaluation different standard DLM 

Non-semi-
supervised 
approach 

Pseudo dataset generated through 

Measure MobileNet PreActResNet18 ResNet18 VGG16 VGG19 Propose  
model 

Accuracy MobileNet 36.27 64.61 81.94 79.88 83.85 59.32 91.7 
PreActResNet1
8 

19.97 74.45 92.66 92.22 93.39 67.69 94.83 

ResNet18 27.17 68.58 88.11 92.95 91.19 68.72 96.89 
VGG16 21.59 79.15 94.27 92.07 91.78 75.48 95.57 
VGG19 33.92 89.53 93.69 89.72 92.8 75.33 94.89 
Average 27.784 75.264 90.134 89.368 90.602 69.308 94.77 

Specificity MobileNet 11.29 83.73 91.34 79.79 93.7 97.11 97.59 
PreActResNet1
8 

10.5 95.8 96.33 90.29 97.9 97.11 96.85 

ResNet18 14.17 97.64 97.11 93.18 97.64 96.85 97.69 
VGG16 0.79 96.85 96.85 91.34 98.16 98.69 97.85 
VGG19 2.62 95.8 96.06 88.71 96.85 98.95 99.1 
Average 7.874 93.964 95.538 88.662 96 97.742 97.82 

Sensitivity MobileNet 68 40.33 70 80 71.33 11.33 69.33 
PreActResNet1
8 

32 47.33 88 94.67 87.67 30.33 91 

ResNet18 43.67 31.67 76.67 92.67 83 33 93.33 
VGG16 48 56.67 91 93 83.67 46 93.67 
VGG19 73.67 79.13 90.67 91 87.67 45.33 91.33 
Average 53.068 51.026 83.268 90.268 82.668 33.198 87.732 

Positive predictive 
value (Precision) 

MobileNet 37.64 66.12 86.42 75.71 89.92 75.56 92.95 

PreActResNet1
8 

21.97 89.87 94.96 88.47 97.05 89.22 96.74 

ResNet18 28.6 91.35 95.44 91.45 96.51 89.19 98.88 
VGG16 27.59 93.41 95.79 89.42 97.29 96.5 95.95 
VGG19 37.33 91.92 94.77 86.39 95.64 97.14 98.01 
Average 30.626 86.534 93.476 86.288 95.282 89.522 96.506 

Matthews correlation 
coefficient 

MobileNet −25.51 26.95 63.56 59.51 67.71 16.88 72.27 

(contd.)
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Table 4 — Suggested model result evaluation different standard DLM   (contd.) 

Non-semi-
supervised 
approach 

Pseudo dataset generated through 

Measure MobileNet PreActRes 
Net18 

ResNet18 VGG16 VGG19 Propose  
model 

ResNet18 −44.6 40.44 76.6 85.73 82.52 40.12 93.74 
VGG16 −60.1 60.04 88.41 84.03 83.74 54.47 89.99 
VGG19 −34.92 77.57 87.2 79.35 85.51 54.4 92.68 
Average −44.932 51.146 80.188 78.622 81.254 40.81 87.444 

False discovery rate MobileNet 62.36 33.88 13.58 24.29 10.08 24.44 5.05 
PreActResNet1
8 

78.03 10.13 5.04 11.53 2.95 10.78 3.96 

ResNet18 71.4 8.65 4.56 6.82 3.49 10.81 0.97
VGG16 72.41 6.59 4.21 8.66 2.71 3.5 4.18
VGG19 62.67 8.08 5.23 11.29 4.36 2.86 2.98 
Average 69.374 13.466 6.524 11.338 4.7 10.478 3.428 

False positive rate MobileNet 88.71 16.27 8.66 20.21 6.3 2.89 3.71 
PreActResNet1
8 

89.5 4.2 3.67 9.71 2.1 2.89 3.05 

ResNet18 85.83 2.36 2.89 8.55 2.36 3.15 1.01 
VGG16 99.21 3.15 3.15 10.58 1.84 1.31 3.05 
VGG19 97.38 4.2 3.94 13.61 3.15 1.05 1.71 
Average 92.126 6.036 4.462 13.712 3.15 2.258 2.506 

F1 Score MobileNet 48.46 50.1 77.35 77.8 79.55 19.71 79.45 
PreActResNet1
8 

26.05 62.01 91.35 91.47 92.12 45.27 93.78 

ResNet18 34.56 47.03 85.03 92.05 89.25 48.18 96.19 
VGG16 35.04 70.54 93.33 91.18 89.96 62.3 94.7 
VGG19 49.55 85.05 92.67 88.64 91.48 61.82 96.24 
Average 38.732 62.946 87.946 88.228 88.472 47.456 92.072 

Negative predictive 
value 

MobileNet 30.94 64.06 79.45 83.52 80.59 58.18 79.97 

PreActResNet1
8 

16.39 69.79 91.07 95.56 90.98 63.9 93.48 

ResNet18 24.22 64.47 84.09 94.16 87.94 64.74 95.24 
VGG16 1.89 73.95 93.18 94.31 88.42 69.89 94.65 
VGG19 11.24 88.38 92.89 92.6 90.89 69.69 95.91 
Average 16.936 72.13 88.136 92.03 87.764 65.28 91.85 

False negative rate MobileNet 32 59.67 30 20 28.67 88.67 33.67 
PreActResNet1
8 

68 52.67 12 5.33 12.33 69.67 9

ResNet18 56.33 68.33 23.33 7.33 17 67 6.67 
VGG16 52 43.33 9 7 16.33 54 7.33
VGG19 26.33 20.87 9.33 9 12.33 54.67 5.67
Average 46.932 48.974 16.732 9.732 17.332 66.802 12.468 

FDR, 92.126% FPR, 38.732% f1, 16.936% NPV, 
and 46.932% FNR.  

The results of the traditional DLM on the HATA-
SU unobserved data is evaluated in the second section 
when a pseudo data is label using MobileNet. The 
average measure for standard DLM such as 75.264% 
ACC, 93.964% SPEC, 51.026 SENS, 86.534% PREC, 
51.146% MCC, 13.466% FDR, 6.036% FPR, 
62.946% f1, 72.13% NPV, and 48.974% FNR. The 

results of the traditional DLM on the HATA-SU 
unobserved data is evaluated in the third section when 
a pseudo data is label using PreActResNet18. The 
average measure for standard DLM such as 90.134% 
ACC, 95.538% SPEC, 83.268% SENS, 93.476% 
PREC, 80.188% MCC, 6.524% FDR, 4.462%  FPR, 
87.946% f1, 88.136% NPV, and 16.732% FNR. The 
results of the traditional DLM on the HATA-SU 
unobserved   data  is  evaluated  in  the  fourth  section  
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when a pseudo data is label using ResNet18. The 
average measure for standard DLM such as  89.368% 
ACC, 88.662% SPEC,  90.268% SENS, 86.288% 
PREC, 78.622% MCC, 13.712% FDR, 11.338% FPR, 
88.228% f1, 92.03% NPV, and 9.732% FNR. The 
results of the traditional DLM on the HATA-SU 
unobserved data is evaluated in the fifth section when 
a pseudo data is label using VGG16. The average 
measure for standard DLM such as  90.602% ACC, 
96.85% SPEC, 82.668% SENS, 95.282% PREC, 
81.254% MCC, 4.718% FDR, 3.15% FPR, 88.472% 
f1, 87.764% NPV, and 17.332% FNR. The results of 
the traditional DLM on the HATA-SU unobserved 
data is evaluated in the sixth section when a pseudo 
data is label using VGG19. The average measure for 
standard DLM such as  69.308% ACC, 94.77% 
SPEC,  97.742% SENS,  33.198% PREC,  89.522% 
MCC, 40.81%FDR, 10.478% FPR, 47.456% f1, 
65.28% NPV, and 65.28% FNR.The results of the 
traditional DLM on the HATA-SU unobserved data is 

evaluated in the seventh section when a pseudo data is 
label using our suggested  model. The average 
measure for standard DLM are 94.77% ACC,  97.82% 
SPEC, 87.732% SENS, 96.506% PREC,  87.444% 
MCC, 3.428% FDR, 2.506% FPR, 92.072% f1, 
91.85% NPV, and 12.468%  FNR. Numerous 
illustrative cases along with the correct and incorrect 
predictions made by our suggested model for 
classifying shoulder bone fractures using the 
concealed HATA-SU dataset is shown in Fig. 7 from 
where it is evident that the model's classification 
performance might be enhanced. In contrast to more 
intricate model designs, we mostly used the 
fundamental DLM in our work. since we're looking at 
methods to use unlabeled data efficiently to aid the 
medical sector. 

Overall, the recommended models performed well, 
with the semi-supervised strategy not being the least 
effective when compared to the others. The results of 
the traditional DLM on the HATA-SU unobserved 

Fig. 7 — Correct and incorrect prediction label through suggested  model with Actual vs Prediction as (a) p & p, (b) n & n, (c) p & 
p, (d) n & n, (e) p & p, (f) n & n, (g) p & p, (h) p & p, (i) n & n. Here p = positive and n = negative. 
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data is evaluated when a pseudo data is label using 
our suggested  model (Table 4). The average measure  
for standard DLM are 94.77% ACC,  97.82% SPEC, 
87.732% SENS, 96.506% PREC, 87.444% MCC, 
3.428% FDR, 2.506% FPR, 92.072% f1, 91.85% 
NPV, and 12.468%  FNR. The suggested  model 
achieves an increase of 241.09% ACC, 1142.31% 
SPEC, 65.31% SENS, 215.11% PREC, 137.71% f1, 
294% MCC, 241.09% NPV, and decreases of 
−95.05% FDR,−97.27%  FPR, and −73.43% FNR
(Fig. 8).

Limitation 
The use of ensemble methods is an effective approach to 

improve the effectiveness and robustness of DLM. 
Nevertheless, there are restrictions that must be taken into 
account while utilizing these techniques. The following are 
few restrictions associated with proposed methods: The 
complexity of the suggestive approach can be significantly 
increased due to the need to train multiple models, which 
can also extend the time needed to evaluate the models. 
These techniques can be prone to over fitting if structure is 
complex or if there is a shortage of training data, leading to 
poor result on new data. The explainability of proposed 
methods is often limited as they are typically considered 
"black box" models, making it difficult to explain the 
outcomes. The overall performance of proposed model is 
heavily dependent on the performance of DML. Poor 
performance by one or more models can negatively impact 
the overall performance of the proposed model. 

Conclusions 
In this research, we offer RTS-SSDL, Rank-based Two-

Stage Semi-Supervised Deep Learning framework for X-
ray data analysis that makes use of Active Learning (AL) to 
unlock the potential of unlabeled data. We suggest adaptive 
pseudo-labeling and instructive active annotation in the 
algorithm, which make use of the unlabeled medical 
pictures and create a closed-loop structure to enhance the 
performance of the SSL model for medical images. The 
proposed model outperforms the other models when both 

labeled and pseudo datasets are used. While accuracy is a 
useful performance statistic, it may not always be the best 
when the dataset's target variable classes are imbalanced. 
Therefore, the study also considers other metrics, such as 
FPR, FNR, FDR, SENS, SPEC, PREC, and MCC, which 
indicate an effective and efficient model. The proposed 
RTS-SSDL models have the potential to reduce labeling 
efforts while maintaining excellent model performance. 
According to the experimental findings, RTS-SSDL 
performs noticeably better on medical image classification 
tasks than other approaches. In terms of future directions, 
the presented RTS-SSDL model can be extended to 
different medical imaging datasets to evaluate its 
effectiveness in other domains. Additionally, the model's 
architecture can be further optimized to improve its 
performance and reduce the computational requirements.  

The study only evaluates the model's performance on a 
binary classification task, so future work could explore its 
performance on multi-class classification tasks. 
Furthermore, exploring the use of transfer learning to 
enhance the model's ability to generalize to new datasets 
would be another interesting direction. Overall, the 
proposed RTS-SSDL model shows promise for the semi-
supervised classification of medical imaging data, and there 
is significant potential for further development and 
optimization in future research. 
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