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Fusion of Non-Destructive Test (NDT) data results in more accurate estimation of concrete strength when compared to any 
single NDT data. Estimation of concrete strength from NDT results assumes importance for health assessment and evaluation of 
existing concrete buildings, particularly those near the end of their design life. Application of machine learning tools and response 
surface method has found popularity in recent years for this purpose. In this study, universally popular Artificial Neural Network 
(ANN) and relatively un-explored Decision Tree (DT) are applied to estimate concrete strength from rebound number and 
ultrasonic pulse velocity data collected from literature, in single and combined forms. A ranking system based on ratios of multiple 
performance measures was demonstrated for cases where different models are adjudged better considering different performance 
measures. From the results, it was concluded that fusion of NDT data resulted in better accuracy, for both ANN and DT. 
Comparing  the selected performance measures as well as the ranks of the two machine learning tools, ANN models were found to 
perform better as compared to the DT models. The narrow range of multiple performance metrics obtained for three different data 
divisions (into modelling and evaluation sets) in all cases imparted confidence in the robustness of the approach of model 
development adopted in this study. 
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Introduction 
Assessment of strength of concrete for in-service 

buildings is an important activity today, with many of the 
concrete structures constructed during last few decades of 
twentieth century nearing the end of their design lives. 
Estimation of compressive strength of concrete of existing 
structures would give an indication of present health, as 
well as provide inputs (many concrete parameters are 
estimated from the characteristic strength of concrete 
using empirical expressions) for detailed analysis and 
evaluation. The most accurate estimation of the 
compressive strength can be obtained from the results of 
compressive tests conducted on the cores taken from all 
over the existing structure, but that would be a destructive 
test and it would, to a certain extent depending on the 
number of cores, weaken the structure. To avoid or reduce 
this effect, Non-Destructive Tests (NDT) come extremely 
handy. Rebound hammer test (yielding Rebound Number 
or RN) and the Ultrasonic Pulse Velocity (USPV) test are 
among the most commonly employed NDT on existing 
concrete structures for assessment of compressive 
strength. 

Rebound Number is based on the resistance offered 
by the concrete surface to the impact of rebound 
hammer, whereas USPV is the velocity of ultrasonic 
wave passed through concrete. Thus, neither test can 
directly produce the compressive strength value for 
concrete. For that purpose, relationships are required to 
be established between RN and compressive strength 
or USPV and compressive strength – thereby 
estimating the compressive strength in an indirect 
manner. As the dependence of compressive strength on 
either of these two NDT results (RN or USPV) cannot 
be generalised, it is generally advocated that structure 
specific relationships be developed for better accuracy 
in strength estimates. Recently, fusion of different 
NDT data on concrete1–6 has gained popularity due to 
improved accuracy of estimations. 

Of the plethora of literature on strength estimation of 
concrete from NDT using traditional, and machine 
learning or Artificial Intelligence (AI) techniques, a 
few are mentioned here. These and references 
contained therein would provide an exhaustive 
literature on concrete strength estimation from NDT. 
Traditionally such correlation expressions have been 
developed using Statistical Regression (SR) 
techniques, in which the parameters of a certain 
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assumed equation are evaluated from the concurrent 
NDT and core data.1,3–7 Response surface method7, 
stand-alone machine learning techniques (Artificial 
Neural Network or ANN1,7–13, Support Vector Machine 
or SVM11, Random forest or RF14; Boosted tree15) and 
hybrid machine learning techniques (Adaptive neuro-
fuzzy technique or ANFIS10; Genetic algorithm 
combined with ANN or GA-ANN16) that employ no a-
priori assumption of equation form has found many 
applications as well.  

Compared to the regression based models that have 
been reported for laboratory data as well as data from 
existing structures, it is observed that the estimation of 
strength from NDT data or NDT fusion using machine 
learning techniques have been reported majorly from 
laboratory test results. This could be due to the 
requirement of a large database for development of 
machine learning models. From the literature review 
conducted, it was also noticed that Decision Tree (DT) 
was applied for prediction of concrete strength from 
ingredients17–20 but application of DT for strength 
estimation from NDT data, either single or combined, 
is scarce. DT had been successfully employed for other 
civil and ocean engineering applications: estimation of 
capacity of single angle struts21; prediction of ocean 
currents22; and prediction of blast induced ground 
vibrations23, among others. The present study therefore 
identified the research objectives as listed below. 

Research Contribution 
This study aims to address the following: 

 Explore a relatively less employed machine
learning tool: DT–for NDT data fusion and
compare the performance with universally
popular ANN.

 Examine fusion of NDT data from existing
buildings using machine learning tools (ANN and
DT) targeted towards accurate estimation of
compressive strength of concrete.

 Demonstrate a performance ratio based method
for ranking the models, when evaluating different
models with multiple (possibly contradicting)
performance measures.

Materials and Methods 

Data 
Data employed in this study included the RN, 

USPV and (equivalent cube) compressive strength 
obtained from the cores taken from existing 
structures, and was collected from literature.3 A sum 
total of 205 data sets was available, and the data 
statistics are presented in Table 1. For further details 
of the sample collection and measurements, readers 
may refer the original article.3 The compressive 
strength data is plotted against RN in Fig. 1a and 
against USPV in Fig. 1b, where the generic pattern 
and high correlation of the basic data (0.88 for RN 
and 0.84 for USPV) can be noted. 

This set of 205 data was split randomly into two 
sub-sets: modelling and evaluation, which are also 

Table 1 — Descriptive statistics of data used in study 

Statistic RN USPV  
(km/s) 

Compressive  
strength (MPa) 

Maximum 46.00 4.48 36.94
Minimum 21.94 2.61 5.21
Mean 34.09 3.66 18.62
Median 33.49 3.71 17.74
Standard deviation 5.76 0.44 6.53 
Coefficient of variation 0.17 0.12 0.35 

Fig. 1 — Basic data scatter for NDT data a) RN b) USPV 
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known as training and testing data in AI terminology. 
The modelling set contained around 75% of the data 
(154 nos.) with the remaining data (51 nos.) falling in 
the evaluation set. In order to evaluate whether any 
bias was introduced in the performance of DT or 
ANN models due to data division, three such random 
data divisions were performed for analysis and DT / 
ANN models were developed for each of them. The 
range (smaller would be better) and closeness (closer 
would be better) of the various performance indices 
would be examined for this aspect. 

Performance Measures 
The performance of the empirical or machine 

learning models are generally evaluated quantitatively 
with one or more performance measures (such as 
correlation coefficient or root mean square error, 
alternately called metric or index), and concurrently 
examined qualitatively with graphical tools such as 
scatter plot or variable plot. In this study, following 
the principles of data-driven model development, the 
models are developed with a sub-set of the data (as 
explained earlier) and the evaluation of the 
performance is performed with a different sub-set of 
data. As the evaluation data would be totally fresh for 
the model, such performance evaluation gives good 
indication of the predictive capability of the model. 

For this study the following performance measures 
were selected:  
 

 Correlation coefficient (R): indicates the degree
of linear association of the observed and
estimated values;

 Root Mean Squared Error (RMSE): penalized the
larger deviations of estimates from the observed
more;

 Mean Absolute Error (MAE): an error measure on
absolute values of the estimates;

 Mean Absolute Relative Error (MARE): an
absolute error measure on relative scale;

 Root Mean Square Relative Error (RMSRE): a
relative error measure that penalizes the larger
deviations of estimates from the observed more.

The graphical evaluations (qualitative performance 
measures) employed in this study included scatter plot 

of observed and estimated values; and residual plots. 
In a scatter plot, points lying closer to the 1:1 diagonal 
would indicate the better fit. The residual plot would 
help to identify the dependence of residual on the 
value of the estimate, if any. In both the plots, the 
estimates are examined whether they fall outside one 
standard deviation on either side of the observed 
values, as a measure of acceptability.24 Using all these 
performance measures in conjunction would help to 
evaluate the developed models comprehensively for 
comparison. 

Confusion matrix is an elegant method for pictorial 
representation of the performance of machine learning 
technique as well as for comparing the performance 
of different methods.25 While primarily introduced for 
classifiers26, confusion matrix can be applied to 
predictive models – by defining several classes for the 
predicted variable/s.27 In the present study, the entire 
range of predicted variable (compressive strength) has 
been divided into six classes for developing the 
confusion matrix.  

Methodology of Model Development and Comparison 
For a particular modelling sub-set (say, RN and 
compressive strength; data division no. 1) the DT 
model is developed with modelling sub-set and the 
performance of the model is evaluated with the 
evaluation sub-set. For details of structure, 
functioning and development of DT models, readers 
may refer literature.28–31 This exercise is repeated for 
each of the three data divisions, and the various 
performance indices of estimations are recorded for 
comparison (for example, Table 2, discussed later). 
For correlation coefficient, higher value being better, 
normalisation is performed by dividing the individual 
values by the maximum correlation obtained for all 
the models (in Table 2). In case of all other 
performance indices, lower value being better, the 
normalisation is performed by dividing the individual 
values by the minimum value, and taking the 
reciprocal of the number so obtained. Taking 
reciprocal for the indices for which lower value is 
better, ensures that the better model would have 
higher normalised performance index, and therefore, 
these may be combined with the normalised 

Table 2 — Comparison of evaluation performance of DT models based on RN for different divisions of data 

Evaluation set R MAE (MPa) RMSE (MPa) MARE RMSRE Rank 

1 0.88 (0.98) 2.52 (1.00) 3.06 (1.00) 0.16 (0.81) 0.20 (0.85) 3 (4.64) 
2 0.89 (0.99) 2.54 (0.99) 3.06 (1.00) 0.16 (0.81) 0.19 (0.89) 2 (4.69) 
3 0.90 (1.00) 2.60 (0.97) 3.23 (0.95) 0.13 (1.00) 0.17 (1.00) 1 (4.92) 
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correlation to obtain the combined performance 
metric for ranking of the models. The models may be 
ranked now based on the summation of all normalised 
performance indices, with the higher value of the 
summation would be considered better. Now this 
exercise is performed for the other two modelling 
sub-sets (USPV and compressive strength; RN, 
USPV, and compressive strength) in a similar fashion. 
The ranges of performance metrics (obtained for 
corresponding evaluation sub-sets) of each of the 
models are recorded. 
 

For development of ANN model, only one hidden 
layer was considered in this study and for obtaining 
the optimum number of neurons in the hidden layer, 
models were developed with varying number of 
neurons in hidden layer (1 to 10). The readers may 
refer textbooks32–34 for the details of ANN, structure 
and functioning. The ANN models were ranked 
according to the philosophy (summation of relative 
performance indices) explained earlier. The Table 3 
enumerates the individual performance metrics 
obtained for ANN models developed using RN and 
USPV together as inputs, as well as the overall ranks 

– for varying number of neurons in the hidden layer
(1 to 10). The first position is claimed by the model
architecture 2-2-1 and therefore, this architecture was
used subsequently for RN-USPV based ANN model
development. Similar exercises for the other two
ANN models (RN-based and USPV-based) were
performed to select the number of neurons in hidden
layer for those ANN models. It was noted that in
general, the best ANN models contained typically two
to three neurons in the hidden layer. This could
possibly due to the good correlation in the basic data
(0.89 for RN and 0.84 for USPV). Performance of the
best ANN models for the different input datasets
(RN/USPV/RN and USPV) for the three data
divisions would be noted (say, Table 4, discussed
later). Subsequently for each combination of NDT
technique (RN; USPV; RN and USPV) the range of
performance obtained from ANN models are recorded
for comparison (for example, Table 5, discussed later).
 

Finally, the best performance obtained for DT and 
ANN model for the three sets of NDT (RN; USPV; 
RN and USPV), are compared with the corresponding 
Statistical Regression (SR) models. Confusion matrices 

Table 3 — Comparison of evaluation performance of ANN models based on RN and USPV, for different number of neurons in hidden layer 

Number of neurons in hidden layer R MAE (MPa) RMSE  (MPa) MARE RMSRE Rank 

1 0.94 1.79 2.15 0.11 0.13 2
2 0.94 1.74 2.12 0.11 0.13 1
3 0.94 1.79 2.24 0.11 0.14 3
4 0.93 1.88 2.30 0.11 0.14 4
5 0.92 2.10 2.59 0.13 0.17 7
6 0.92 1.91 2.48 0.11 0.15 5
7 0.91 2.02 2.60 0.13 0.17 6
8 0.84 2.58 4.00 0.15 0.22 8
9 0.76 3.28 5.13 0.19 0.27 10
10 0.75 2.51 5.49 0.15 0.28 9

Table 4 — Comparison of evaluation performance of best ANN models based on RN & USPV, for different divisions of data 

Evaluation set R MAE (MPa) RMSE (MPa) MARE RMSRE Rank 

1 0.94 1.74 2.12 0.11 0.13 2
2 0.94 1.78 2.25 0.10 0.12 1
3 0.93 2.08 2.49 0.13 0.16 3

Table 5 — Range of performance metrics for DT and ANN models for different NDT techniques 

NDT technique R MAE (MPa) RMSE (MPa) MARE RMSRE 

DT models 

RN 0.88 – 0.90 2.52 – 2.60 3.06 – 3.23 0.13 – 0.16 0.17 – 0.20 
USPV 0.85 – 0.88 2.48 – 2.69 3.12 – 3.28 0.13 – 0.16 0.18 – 0.20 
RN & USPV 0.91 – 0.93 1.88 – 2.13 2.49 – 2.76 0.11 – 0.12 0.14 – 0.15 

ANN models 

RN 0.91 – 0.92 2.19 – 2.42 2.62 – 3.10 0.13 – 0.14 0.16 – 0.18 
USPV 0.87 – 0.89 2.28 – 2.70 2.91 – 3.22 0.12 – 0.16 0.15 – 0.20 
RN & USPV 0.93 – 0.94 1.74 – 2.08 2.12 – 2.49 0.10 – 0.13 0.13 – 0.16 



DAUJI: CONCRETE NDT DATA FUSION WITH DT AND ANN 835

(Table 6, Table 7, and Table 8) for these three predictive 
tools are presented for individual as well as relative 
evaluation of their predictive performance. Classes of 5 
MPa have been defined to cover the entire range of 
compressive strength, from 5 MPa to 37 MPa – with the 
last class slightly wider (30–37 MPa). Numerical 
accuracy are examined with the performance metrics 
reported in literature (say, Table 9, discussed later) for 
these models as well. The relative merits and demerits of 
the approached can be discussed based on this 
comparison table. 

Results and Discussion 
The results of the study are presented in this section. 

As a demonstration of development of the predictive 
models using the two tools (DT and ANN), development 
of DT models with RN data; and development of ANN 
model with combined RN and USPV data are discussed 
in detail. Subsequently, the summary of results of the 
various models developed for the three combinations of 
inputs (RN; USPV; RN and USPV), three random data 
divisions, and the two tools (DT and ANN) are 
compared and discussed.  

Development of DT Model with RN Data 
As explained in the methodology section, three 

random data divisions (modelling and evaluation sets) 
were considered for each NDT technique. The 
evaluated performance of the DT models so 
developed for the RN data, are listed in Table 2. The 
ranking for the DT models are evaluated according to 
the method explained in methodology section. The 
relative values of the performance metrics are given 
in brackets for each performance metric. The 

Table 6 — Confusion matrix for best SR (RN & USPV) model (in percentage: All – 205 data) 

Range of compressive strength (MPa) 5 to <10 10 to <15 15 to < 20 20 to < 25 25 to < 30 30 to < 37 

5 to < 10 71 29 0 0 0 0 
10 to < 15 6 65 29 0 0 0 
15 to < 20 0 16 71 14 0 0 
20 to < 25 0 0 27 59 15 0 
25 to < 30 0 0 0 40 47 13 
30 to < 37 0 0 0 10 60 30 

SR: Ali-Benyahia et al., 2017 

Table 7 — Confusion Matrix for Best DT (RN & USPV) Model (in Percentage: Testing – 51 data) 

Range of compressive strength (MPa) 5 to < 10 10 to < 15 15 to < 20 20 to < 25 25 to < 30 30 to < 37 

5 to < 10 50 50 0 0 0 0 
10 to < 15 11 50 39 0 0 0 
15 to < 20 0 8 75 17 0 0 
20 to < 25 0 0 0 36 64 0 
25 to < 30 0 0 0 0 67 33 
30 to < 37 0 0 0 0 50 50 

DT: this study 

Table 8 — Confusion matrix for best ANN (RN & USPV) Model (in percentage: testing – 51 data) 

Range of compressive strength (MPa) 5 to < 10 10 to < 15 15 to < 20 20 to < 25 25 to < 30 30 to < 37 

5 to < 10 50 50 0 0 0 0 
10 to < 15 15 62 23 0 0 0 
15 to < 20 0 9 73 18 0 0 
20 to < 25 0 0 17 50 33 0 
25 to < 30 0 0 0 40 40 20 
30 to < 37 0 0 0 0 100 0 

ANN: this study 

Table 9 — Comparison of performance for different methods and 
NDT techniques 

NDT Type Method Correlation RMSE (MPa) Rank 

RN 
DT 0.90 3.23 7
ANN 0.92 2.62 4
SR 0.88 3.06 5

USPV 
DT 0.85 3.25 8
ANN 0.87 3.02 6
SR 0.85 3.44 9

RN & USPV 
DT 0.93 2.49 3
ANN 0.94 2.25 1
SR 0.93 2.42 2

DT: this study; ANN: this study; SR: Ali-Benyahia et al., 2017 
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summation of the relative performance metrics is used 
to determine the rank, the sum is provided in brackets 
in the 'rank' column. The closeness of all the evaluation 
performance metrics obtained for the three random data 
divisions indicates that the adopted method is robust 
for the various data divisions. A sample set of plots 
(Fig. 2) are presented for the first evaluation set. It is 
noted in Fig. 2a that only a single estimate (out of 51) 
falls outside the acceptable bounds. The residual plot 
(Fig. 2b) confirms that the errors are independent of the 
variable value, that is, there is no proportional error 
involved in the estimates with the DT model. Similar 
plots were examined for evaluation of performance but 
are not included here for brevity. 

Development of ANN Model for Combination of RN and 
USPV Data 

As explained in the methodology, different numbers 
of neurons in hidden layer were explored to identify the 
best suited ANN architecture. An example of the 

results for this exercise is provided in Table 3 for ANN 
models based on combined RN and USPV data. 
Employing the performance ratio method explained in 
the methodology, the ranks are obtained for the various 
network architectures. The best architecture identified 
for this particular dataset is 2-2-1. Similar exercise was 
repeated for each ANN model that was developed in 
this study, and the best model has been reported. It may 
be mentioned that the best-suited number of neurons in 
hidden layers for the various ANN models were in the 
range 2 to 3, and no major improvement in 
performance could be observed for higher numbers 
explored. The evaluated performance of the ANN 
models based on RN and USPV, so developed for the 
three different divisions of data, are listed in Table 4. 
The closeness of all the evaluation performance metrics 
obtained for the three random data divisions indicates 
that the adopted method is robust for the various data 
divisions. A sample set of plots (Fig. 3) are presented 

Fig. 2 — Model performance for DT based on RN a) Scatter plot b) Residual plot 

Fig. 3 — Model performance for ANN based on fusion of RN and USPV a) Scatter plot b) Residual plot 
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for the first evaluation set. The scatter plot (Fig. 3a) 
shows that the estimates all fell well within the 
acceptability bounds. The residual plot (Fig. 3b) 
shows that the residuals for the different values of 
compressive strength are much less than those 
observed for the RN-based DT models, and are within 
the one standard deviation bounds. Similar plots for 
other data divisions are omitted for brevity. 

Evaluation of Performance for  DT and ANN Models Using 
Various NDT Techniques 

The exercise explained in earlier sub-section for 
DT model for RN data, is carried out for DT models 
developed for USPV data and combined RN-USPV 
data, and the ranges of performance metrics obtained 
are summarised in Table 5. In a similar fashion as 
explained in earlier sub-section for ANN model for 
RN-USPV data, the ranges of performance metrics 
obtained for ANN models developed for RN or USPV 
data are also included in the Table 5. The scatter plots 
are presented for the three combinations of NDT data 
in Fig. 4, Fig. 5, and Fig. 6 respectively for RN, 
USPV, and RN-USPV based estimations of 
compressive strength. The individual residual plots 
were also examined, but not included here for brevity. 
For the RN based models (Fig. 4), a couple of 
estimates of DT models and one estimate of ANN 
models fell outside the acceptability bounds. For the 
USPV based models (Fig. 5), the numbers outside the 
acceptability bounds went up for DT models to seven, 
and it was a single estimate from ANN models. When 
the NDT data fusion was implemented with RN-

USPV based models (Fig. 6), the estimates were well 
within the bounds for ANN models, whereas for DT 
based models, there were five estimates outside the 
bounds. However, as was ascertained earlier with the 
various performance measures (Table 5), the overall 
performance of the NDT data fusion models was 
adjudged better. 

Specifically, the ANN models had mean absolute 
percentage errors in the range of 10% to 13% for the 
combined RN-USPV model, 13% to 14% for the RN 
model, and 12% to 16% for the USPV model. For the 
models developed using DT, the corresponding ranges 
were 11% to 12% (RN-USPV), and 13% to 16% (for 

Fig. 4 — Scatter plot of model performance for DT and ANN
models based on RN 

Fig. 5 — Scatter plot of model performance for DT and ANN 
models based on USPV 

Fig. 6 — Scatter plot of model performance for DT and ANN
models based on fusion of RN and USPV 
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both RN; and USPV). The root mean square 
percentage error (RMSPE), when examined for the 
models depicted similar picture. The values of 
RMSPE varied between 13% and 16% for the 
combined RN-USPV model, 16% to 18% for the RN 
model, and 15% to 20% for the USPV model – when 
developed using ANN. In case of models developed 
using DT, the values were slightly higher at between 
14% and 15% for the combined RN-USPV model, 
17% to 20% for the RN model, and 18% to 20% for 
the USPV model. Thus, the percentage errors 
considered matched well with the inferences from the 
proposed ranking system. 

Therefore, it is concluded that the performance of 
the models developed using RN and USPV together 
results in better performance for both DT and ANN 
models, followed by models developed using RN and 
lastly, models developed using USPV data. This is 
similar to the observation made by Ali-Benyahia et 
al.3 for the statistical regression (SR) models. It is 
hereby concluded that fusion of NDT data would be a 
good approach to improve the accuracy of prediction 
of compressive strength of concrete using statistical 
regression or machine learning tools. Among the two 
machine learning tools explored in this study, ANN 
models yield more accurate estimates compared to the 
DT, for all three combinations of NDT techniques, as 
indicated by the lower errors, and higher correlation 
for the ANN models.  

The rebound number is better indicator of the 
quality of concrete, though it fails to capture the 
internal voids or deterioration. The USPV value, on 
the other hand, can capture the internal voids or 
deteriorations of concrete, but can be influenced by 
other factors, which might affect the compressive 
strength differently. Therefore, USPV is not as good 
an indicator of the actual concrete strength as RN. In 
this study too, the correlation observed (Fig. 1a: 0.88) 
between the basic data for RN (RN-compressive 
strength) was higher than that observed (Fig. 1b: 0.84) 
for USPV (USPV-compressive strength). Therefore, 
the fact that RN based models outperform USPV 
based models is easily explained. When the two NDT 
data are used in conjunction, the strengths of the two 
techniques (better correlation with the compressive 
strength of RN; internal assessment capability of 
USPV) are combined and that resulted in better 
predictive performance for the NDT fusion models 
(compared to RN based models) developed using any 
technique – DT or ANN. 

Comparison of Performance for Best DT and ANN Models 
(This Study) and SR models3 using Various NDT Techniques 

As a final comparison, the best performance of the 
ANN and DT models developed in this study for the 
three sets of input data (RN; USPV; RN and USPV) 
are compared with the corresponding best regression 
model reported in literature.3 For this purpose, three 
sets of performance measures are compared: the 
estimation/prediction in the correct class (confusion 
matrix – qualitative); the degree of linear association 
(correlation coefficient – quantitative); and the 
numerical accuracy (RMSE – quantitative).  
The confusion matrices for the best models from the 
three techniques are presented in Table 6, Table 7, 
and Table 8 for SR, DT, and ANN respectively. It can 
be observed that considering the entire range of 
compressive strength (5 MPa to 37 MPa), SR emerges 
as the better predictor of class (57%), followed by DT 
(55%), and ANN (46%). However, considering the 
range (10 MPa to 30 MPa) that contains around 87% 
of the data, the difference in performances is reduced: 
SR (61%); DT (57%); and ANN (56%). Thus it might 
be concluded that the SR (RN-USPV) model emerges 
as the better model among the three modelling tools – 
as far as prediction of the correct class of compressive 
strength is concerned. The readers might note that 
these numbers would vary depending on the number 
of classes chosen and their ranges as well. Another 
point worth mentioning is that the SR model was 
presumably developed from the entire dataset, while 
the DT or ANN models were developed with only 
75% of the entire data. More on this will be discussed 
subsequently. 

The performance (correlation coefficient and 
RMSE) reported in literature for the SR models 
developed by Ali-Benyahia et al.3 are presently 
compared in Table 9, to the same performance metrics 
(correlation coefficient and RMSE) of the best DT 
and ANN models in this study, obtained using 
evaluation data for each NDT technique (RN; USPV; 
RN and USPV). The ranks for the different 
combinations of input data and modelling methods are 
obtained in the similar way explained earlier, but 
using only correlation coefficient and RMSE in this 
case. The ranks are listed in the last column of Table 
9. For reasons explained in the last section, use of
fused RN and USPV data yielded better numerical
accuracy of the estimates (indicated by lower RMSE)
for all three methods. Regarding the tools used for
development of the models, the best performance was
obtained in both RN and USPV models as well as
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combined RN-USPV model for ANN-based models. 
This could be due to the model-free approach of 
ANN, wherein there is no a-priori assumed model 
structure and a high degree of flexibility. The second 
place was taken by SR (RN and RN-USPV) and DT 
(USPV) for different NDT data. Possibly when 
employed for well-correlated data (RN in this case) 
the SR models performed well. When the relationship 
between the variables (USPV and compressive 
strength) were not well-defined, the domain-splitting 
approach and separate models in different sub-
domains, as adopted in DT based models, yielded 
better accuracy. But the performances obtained for 
DT were quite close to the SR performance even 
when SR was slightly better. 

An important aspect of the performance 
comparison is highlighted here. Consideration would 
have to be given to the fact that the SR models by Ali-
Benyahia et al.3 were developed from 205 sets of 
data, whereas the DT or ANN models were developed 
with only 154 sets of data (around 75% of SR). 
Furthermore, the performance measures for the SR 
models by Ali-Benyahia et al.3 reported in literature 
was apparently evaluated from the entire set of 205 
data, which were also used for development of the SR 
models in the first place. Hence, though good 
indicators for the goodness of fit of the developed 
empirical equation(s) to the set of 205 data, these 
might not be the predictive performance of the SR 
models. For different datasets used for model 
development and evaluation, the correlation 
coefficient was reportedly lower and the RMSE was 
reportedly higher for the study by Ali-Benyahia et al.3 
In the models (DT and ANN) reported in this study, 
the evaluation data had not been used for 
development of that model, and therefore, these 
would be excellent indicators for the predictive 
performance of the DT or ANN models.  

From the preceding discussion, it is concluded that 
using SR model reported in literature (developed with 
entire dataset), the strength can be estimated in the 
correct class 57% of times (entire dataset), whereas 
the DT and ANN model (developed with 75% of the 
dataset) would predict strength in correct class for 
55% and 46% predictive cases (examined using 
remaining 25% of the dataset). Considering the 
quantitative performance measures (correlation 
coefficient and RMSE) for the same cases, it is 
concluded that whereas the ANN based models would 
definitely be more accurate in predictive performance 

among the three, the DT based models would be 
better than or as good as the SR based models for 
NDT data fusion as well. 

Conclusions 
The proposed ranking method using ratios of 

performance measures helped to discern between 
model performances when all performance measures 
did not completely agree. SR models could estimate 
the compressive strength of concrete in existing 
buildings in the correct class (57%), followed by DT 
(55%), and ANN (46%). Quantitative performance of 
DT models was found to be comparable to SR models 
for strength prediction from RN and USPV. In all 
cases (RN; USPV; and RN-USPV), ANN models 
provided better predictions compared to DT models, 
possibly due to its’ model-free nature. As reported in 
literature for SR models, fusion of data (RN and 
USPV) would help development of better machine 
learning models (ANN & DT) for prediction of 
compressive strength of concrete in existing 
structures. Future studies can explore other machine 
learning tools and NDT techniques, individually or 
combined, for more accurate estimation of the 
strength parameters of concrete in existing structures. 

Acknowledgement 
The author takes this opportunity to express sincere 

gratitude to Ali-Benyahia et al. 3 for the use of data 
from their published article. The author sincerely 
acknowledges the insightful observations and helpful 
suggestions from the anonymous reviewer/s towards 
refining the manuscript. 

Data Availability Statement 
All data used for the study is available in literature, 

as noted in the article. 

References 
1 Erdal M, Prediction of the compressive strength of vacuum 

processed concretes using artificial neural network and 
regression techniques, Sci Res Essay, 4(10) (2009) 1057–1065. 

2 Amini K, Jalalpour M & Delatte N, Advancing concrete 
strength prediction using non-destructive testing: development 
and verification of a generalizable model, Constr Build Mater, 
102 (2016) 762–768. 

3 Ali-Benyahia K, Sbartai Z M, Breysse D, Kenai S & Ghrici M, 
Analysis of the single and combined non-destructive test 
approaches for on-site concrete strength assessment: General 
statements based on a real case-study, Case Stud Constr Mater, 
6 (2017) 109–119, DOI: 10.1016/j.cscm.2017.01.004. 

4 Dauji S, Bhalerao S, Srivastava P K & Bhargava K, 
Conservative characteristic strength of concrete from non-



J SCI IND RES VOL 82 AUGUST 2023 840

destructive and partially destructive testing, J Asian Concr 
Fed, 5(1) (2019) 25–39, DOI: 10.18702/acf.2019.06.30.25. 

5 Karahan S, Büyüksaraç A & Işık E, The relationship between 
concrete strengths obtained by destructive and non-destructive 
methods, Iran J Sci Technol–Trans Civ Eng, 44 (2020) 
91–105, DOI: 10.1007/s40996-019-00334-3. 

6 Sbartai Z M, Breysse D, Larget M & Balayssac J P, 
Combining NDT techniques for improved evaluation of 
concrete properties, Cem Concr Compos, 34 (2012) 725–733, 
DOI: 10.1016/j.cemconcomp.2012.03.005. 

7 Poorarbabi A, Ghasemi M & Moghaddam M A, Concrete 
compressive strength prediction using non-destructive tests 
through response surface methodology, Ain Shams Eng J, 11 
(2020) 939–949, DOI: 10.1016/j.asej.2020.02.009. 

8 Tahwia A M, Heniegal A, Elgamal M S & Tayeh B A, The 
prediction of compressive strength and non-destructive tests of 
sustainable concrete by using artificial neural networks, 
Comput Concr, 27(1) (2021) 21–28, DOI: 10.12989/cac. 
2021.27.1.021. 

9 Silva F A N, Delgado J M P Q, Cavalcanti R S, Azevedo A C, 
Guimaraes A S & Lima A G B, Use of non-destructive testing 
of ultrasound and artificial neural networks to estimate 
compressive strength of concrete, Buildings, 11(44) (2021) 
1–15, DOI: 10.3390/buildings11020044. 

10 Bilgehan M, A comparative study for the concrete 
compressive strength estimation using neural network and 
neuro-fuzzy modelling approaches, Nondestruct Test 
Evaluation, 26(01) (2011) 35–55, DOI: 10.1080/105897 
51003770100. 

11 Park J Y, Yoon Y G & Oh T K, Prediction of concrete strength 
with P-, S-, R-wave velocities by support vector machine 
(SVM) and artificial neural network (ANN), Appl Sci, 9(4053) 
(2019) 1–18, DOI: 10.3390/app9194053. 

12 Tenza-Abril A J, Villacampa Y, Solak A M & Baeza-Brotons 
F, Prediction and sensitivity analysis of compressive strength 
in segregated lightweight concrete based on artificial neural 
network using ultrasonic pulse velocity, Constr Build Mater, 
189 (2018) 1173–1183, DOI: 10.1016/j.conbuildmat. 
2018.09.096. 

13 Demir A, Prediction of hybrid fibre-added concrete strength 
using artificial neural networks, Comput Concr, 15(4) (2015) 
503–514, DOI: 10.12989/cac.2015.15.4.503. 

14 Chun P, Ujike I, Mishima K, Kusumoto M & Okazaki S, 
Random forest-based evaluation technique for internal damage 
in reinforced concrete featuring multiple non-destructive 
testing results, Constr Build Mater, 253(119238) (2020) 1–11, 
DOI: 10.1016/j.conbuildmat.2020.119238. 

15 Ahmed L, Obanishola S, Ibrahim B, Abdulfatai T L & Nii A 
O, A boosted tree machine learning alternative to predictive 
evaluation of non-destructive concrete compressive strength, in 
18th IEEE International Conference on Machine Learning and 
Applications (ICMLA), (Boca Raton, FL, USA) 16–19 
December 2019, DOI: 10.1109/ICMLA.2019.00060. 

16 Du G, Bu L, Hou Q, Zhou J & Lu B, Prediction of the 
compressive strength of high-performance self-compacting 
concrete by an ultrasonic-rebound method based on a GA-BP 

neural network, PLoS ONE, 16(5)e0250795 (2021) 1–25, DOI: 
10.1371/journal.pone.0250795. 

17 Ahmad A, Farooq F, Niewiadomski P, Ostrowski K, Akbar A, 
Aslam F & Alyousef R,  Prediction of compressive strength of 
fly ash based concrete using individual and ensemble 
algorithm, Materials, 14(794) (2021), DOI: 10.3390/ma140 
40794. 

18 Kocamaz A F, Ayaz Y, Karakoc M B, Turkmen I & 
Demirboga R, Prediction of compressive strength and 
ultrasonic pulse velocity of admixtured concrete using tree 
model M5P, Struct Concr, 1 (2020) 1–15. DOI: 10.1002/suco. 
202000061. 

19 Chopra P, Sharma R K, Kumar M & Chopra T, Comparison of 
machine learning techniques for the prediction of compressive 
strength of concrete, Adv Civ Eng, 5481705 (2018) 1–9, DOI: 
10.1155/2018/5481705. 

20 Dauji S, Prediction of compressive strength of concrete with 
decision trees, Int J Concr Technol, 2(1) (2016) 19–29. 

21 Dauji S, Estimation of capacity of eccentrically loaded single 
angle struts with decision trees, Chall J Struct Mech, 5(1) 
(2019) 1–8, DOI: 10.20528/cjsmec.2019.01.001. 

22 Dauji S & Deo M C, Improving numerical current prediction 
with model tree, Indian J Geo-Mar Sci, 49(08) (2020) 1350–
1358. 

23 Dauji S, Prediction accuracy of underground blast variables: 
decision tree and artificial network, Int J Earthq Impact Eng, 
3(1) (2020) 40–59. DOI: 10.1504/IJEIE.2020.105382. 

24 Rafi A, Dauji S & Bhargava K, Estimation of SPT from coarse 
grid data by spatial interpolation technique, in Geotechnical 
Characterization and Modelling, Lect Notes Civ Eng 85, 
edited by Gali M L & RRP (Springer Nature, Singapore) 2020, 
1079–1091, DOI: 10.1007/978-981-15-6086-6_87. 

25 Tharwat A, Classification assessment methods, Appl Comput 
Inform, 17(1) (2021) 168–192, DOI 10.1016/j.aci.2018.08.003 

26 Fawcett T, An introduction to ROC analysis, Pattern Recognit 
Lett, 27 (2006) 861–874, DOI:10.1016/j.patrec.2005.10.010 

27 Piryonesi S M & El-Diraby T E, Data analytics in asset 
management: Cost-effective prediction of the pavement 
condition index, J Infrastruct Syst, 26(1) (2020) 04019036, 
DOI: 10.1061/(ASCE)IS.1943-555X.0000512. 

28 Rokach L & Maimon O, Data Mining with Decision trees: 
Theory and Applications (World Scientific, Singapore) 2015. 

29 Quinlan J R, C4.5: Programs for Machine Learning (Morgan 
Kaufmann, San Francisco) 1992. 

30 Jekabsons G, M5PrimeLab: M5' regression tree, model tree, 
and tree ensemble toolbox for Matlab/Octave, [http://www.cs. 
rtu.lv/jekabsons/ (08 May 2016)]. 

31 Wasserman P D, Advanced Methods in Neural Computing 
(Van Nostrand Reinhold Company, New York) 1993. 

32 Witten I H & Frank E, Data Mining: Practical Machine 
Learning Tools and Techniques (Morgan Kaufmann, San 
Francisco) 2000. 

33 Bose N K & Liang P, Neural Networks Fundamentals with 
Graphs, Algorithms, and Applications (Tata-McGraw-Hill 
Publishing Company Limited, New Delhi, India) 1993. 

34 Haykin S O, Neural Networks and Machine Learning (Pearson 
Education, New Delhi, India) 2008. 


