Open Access Open Access  Restricted Access Subscription Access

Mortality Prediction of Victims in Road Traffic Accidents (RTAs) in India using Opposite Population SGO-DE based Prediction Model


Affiliations
1 School of Computer Engineering, KIIT (Deemed to be University), Bhubaneswar,, India
2 School of Computer Engineering, KIIT (Deemed to be University), Bhubaneswar, India

Getting immediate and appropriate care for the victims of Road Traffic Accidents (RTAs) in countries like India with huge population is a challenging job. In this paper a new hybridized evolutionary algorithm has been proposed for hyper-parameter tuning of the hyper-parameters of the prediction models using which mortality prediction of victims of RTAs in India have been performed. The proposed methodology Opp-SGO-DE has been used for parameter tuning in prediction algorithms like Random Forest (RF) and Support Vector Machine (SVM) and promising results were found from the experimentation. In RF, accuracy was increased from 0.75 to 0.82 and F1-score was increased from 0.66 to 0.77 in dataset-1 and accuracy was increased from 0.66 to 0.75 and F1-score was increased from 0.62 to 0.65 in dataset-2. In SVM, accuracy was increased from 0.63 to 0.74 and F1-score was increased from 0.58 to 0.67 in dataset-1 and accuracy was increased from 0.56 to 0.62 and F1-score was increased from 0.54 to 0.575 in dataset-2.
User
Notifications
Font Size

Abstract Views: 132




  • Mortality Prediction of Victims in Road Traffic Accidents (RTAs) in India using Opposite Population SGO-DE based Prediction Model

Abstract Views: 132  | 

Authors

Junali Jasmine Jena
School of Computer Engineering, KIIT (Deemed to be University), Bhubaneswar,, India
Suresh Chandra Satapathy
School of Computer Engineering, KIIT (Deemed to be University), Bhubaneswar, India

Abstract


Getting immediate and appropriate care for the victims of Road Traffic Accidents (RTAs) in countries like India with huge population is a challenging job. In this paper a new hybridized evolutionary algorithm has been proposed for hyper-parameter tuning of the hyper-parameters of the prediction models using which mortality prediction of victims of RTAs in India have been performed. The proposed methodology Opp-SGO-DE has been used for parameter tuning in prediction algorithms like Random Forest (RF) and Support Vector Machine (SVM) and promising results were found from the experimentation. In RF, accuracy was increased from 0.75 to 0.82 and F1-score was increased from 0.66 to 0.77 in dataset-1 and accuracy was increased from 0.66 to 0.75 and F1-score was increased from 0.62 to 0.65 in dataset-2. In SVM, accuracy was increased from 0.63 to 0.74 and F1-score was increased from 0.58 to 0.67 in dataset-1 and accuracy was increased from 0.56 to 0.62 and F1-score was increased from 0.54 to 0.575 in dataset-2.