Mould preparation is an important phase in the injection moulding process. The surface roughness of the mould affects the surface finish of the final plastic product. Quality product with a better production rate is required to meet the competition in the present market. To achieve this objective, manufacturers try to select the best combination of parameters. Multi-objective optimization is one such technique to obtain the optimal process parameters that give better quality with a good production rate. The current paper describes the application of Multi-Objective Genetic Algorithms (MOGA) on the Artificial Neural Network (ANN) model for pocket milling on AA7075. Through the application of ANN with MOGA minimum Surface Roughness (SR) is achieved with a better Material Removal Rate (MRR). From the confirmation experiments, it is evident that follow-periphery tool path gives a better surface finish with higher MRR and the percentage error observed is 1.9553 and 1.8282 respectively.
Keywords
Aluminium, ANN, Multi objective genetic algorithms, RSM, Tool trajectory
User
Font Size
Information