The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The high Impedance Technique has emerged as a modern approach for high-gain microstrip antennas. A high impedance surface minimizes surface waves and provides increased gain. Instead of, a typical mushroom to design High Impedance Surface (HIS), fractal geometry can be used. Hilbert curve-based Fractal geometry minimizes physical length and keeps electrical length the same. In this work, three iterations of Hilbert curve-shaped HIS geometry are studied with emphasis on HIS application. Fractal facilitates multi-frequency operation from GSM 1800 MHz to 6 GHz Wireless applications. The antennas have a peak gain of 5.3 dbi. The simulation is conducted in HFSS, and the analysis is performed using reports like reflection coefficients, radiation patterns, and gain plots.

Keywords

Fractal Geometries, High Impedance Surfaces, Hilbert Curves.
User
Notifications
Font Size