The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Haze significantly lowers the quality of the photos and videos that are taken. This might potentially be dangerous in addition to having an impact on the monitoring equipment' dependability. Recent years have seen an increase in issues brought on by foggy settings, necessitating the development of real-time dehazing techniques. Intelligent vision systems, such as surveillance and monitoring systems, rely fundamentally on the characteristics of the input pictures having a significant impact on the accuracy of the object detection. This paper presents a fast video dehazing technique using Generative Adversarial Network (GAN) model. The haze in the input video is estimated using depth in the scene extracted using a pre trained monocular depth ResNet model. Based on the amount of haze, an appropriate model is selected which is trained for specific haze conditions. The novelty of the proposed work is that the generator model is kept simple to get faster results in real-time. The discriminator is kept complex to make the generator more efficient. The traditional loss function is replaced with Visual Geometry Group (VGG) feature loss for better dehazing. The proposed model produced better results when compared to existing models. The Peak Signal to Noise Ratio (PSNR) obtained for most of the frames is above 32. The execution time is less than 60 milli seconds which makes the proposed model suited for video dehazing.

Keywords

Depth Estimation, Discriminator Model, Generative Adversarial Networks, Generator Model, ResNet.
User
Notifications
Font Size