The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The integration of intelligence into everyday products has been possible due to the ongoing shrinking of hardware and a rise in power efficiency. The Internet of Things (IoT) area arose from the tendency to add computational capabilities to so-called non-intelligent daily items. IoT systems are attractive targets for cyber-attacks because they have many applications. Adversaries use a variety of Advanced Persistent Threat (APT) strategies and trace the source of cyber-attack events to safeguard IoT networks. The Particle Deep Framework (PDF), which is proposed in this study, is a novel Network Forensics (NF) that encompasses the digital investigative phases for spotting & tracing attack activity in IoT networks. The suggested framework containsthree novel functionalities for dealing with encrypted networks, such as collecting network data flows & confirming their integrity, using a PSO algorithm, "Bot-IoT"& "UNSW NB15" datasets. The suggested PDF is related to several deep-learning methods. Experimental outcomes show that the proposed framework is very good at discovering & tracing cyber-attack occurrences when compared to existing approaches. The proposed design is implemented using neural network technology. The proposed design has 10% accuracy when compared with the existing structure. This paper is expected to offer a quick reference for researchers interested in understanding the use of network forensics and IOT.

Keywords

Attack Tracing, Botnets, IOT, Network Forensics, Particle Swarm Optimization.
User
Notifications
Font Size