Open Access
Subscription Access
Addressing Model Uncertainties and External Disturbances in Optimal Robust Control for Vibration Reduction in a Flexible Link Manipulator
A novel Optimal Robust Controller (ORC) for reducing vibration in a flexible link manipulator has been designed in this work. Compared to stiff link manipulators, flexible link manipulators have advantages, but they also have problems including link vibration, model uncertainty, and outside disruptions. The ORC aims to address these challenges and improve the positioning of the flexible links by reducing the link vibrations. Using the Assumed Mode Method (AMM), the dynamic model of a two-link flexible manipulator has been developed in order to create the ORC. With two mode shapes taken into consideration for each link, the deflection of the links has been modelled using mode shapes. The ORC has been designed to achieve robust performance in vibration reduction, even in the presence of unmatched model uncertainty. Proof of the matching condition of the uncertainty has been given, and the closed-loop stability of the resulting system has been established. The value of the uncertain parameter has been purposefully changed to illustrate the robustness of the created controller. For comparison purposes, a well-known reliable controller called the Sliding Mode Controller (SMC) has also been developed. The performance of the proposed ORC has been compared with that of the SMC in the simulation section, and the ORC is determined to be more effective at minimizing vibration.
Keywords
External Disturbances, Matching Condition, Payload, Sliding Mode Controller, Vibration.
User
Font Size
Information
- Lin F, Robust control design: an optimal control approach (John Wiley & Sons) 2007.
- Hisseine D & Lohmann B, Robust control for a flexible-link manipulator using sliding mode techniques and nonlinear π―β design methods, Proc ICRA IEEE Int Conf Robot Automat (IEEE) 2001, 3865β3870, doi: 10.1109/ROBOT.2001. 933220.
- Karkoub M, Tamma K & Balas G, Robust control of two-link flexible manipulators using the ΞΌ-synthesis technique, J Vib Control, 5 (1999) 559β576, doi:10.1177/107754639900500404.
- Li Y, Liu G, Hong T & Liu K, Robust control of a two-link flexible manipulator with neural networks based quasi-static deflection compensation, Proc American Control Conf, 6 (2003) 5258β5263, doi: 10.1109/ACC.2003.1242562.
- Wang Z, Zeng H, Ho D W & Unbehauen H, Multi objective control of a four-link flexible manipulator: a robust π―β approach, IEEE Trans Control Syst Technol, 10 (2002) 866β875, doi: 10.1109/TCST.2002.804132.
- Yang X, Ge S S & He W, Dynamic modeling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances, Int J Control, 91 (2018) 969β988, doi: 10.1080/00207179.2017.1300837.
- Daafouz J, Garcia G & Bernussou J, Robust control of a flexible robot arm using the quadratic d-stability approach, IEEE Trans Control Syst Technol, 6 (1998) 524β533, doi: 10.1109/87.701347.
- Zhao Z, He X & Ahn C K, Boundary disturbance observer-based control of a vibrating single-link flexible manipulator, IEEE Trans Syst Man Cybern: Syst, 51 (2019) 2382β2390, doi: 10.1109/TSMC.2019.2912900.
- Lochan K, Singh J P & Roy B K, Tracking control and deflection suppression of an AMM modelled TLFM using back stepping based adaptive SMC technique, in Control Instrum Syst: Proc CISCON 2018 (Springer Singapore) 2020, 43β58, doi: 10.1007/978-981-13-9419-5_4.
- Fayazi A, Pariz N, Karimpour A & Hosseinnia S H, Robust position-based impedance control of lightweight single-link flexible robots interacting with the unknown environment via a fractional-order sliding mode controller, Robotica, 36 (2018) 1920β1942, doi:10.1017/S0263574718000802.
- Fareh R, Al-Shabi M, Bettayeb M & Ghommam J, Robust active disturbance rejection control for flexible link manipulator, Robotica, 38 (2020) 118β135, doi:10.1017/S026357471900050X.
- Fayazi A, Pariz N, Karimpour A, Feliu-Batlle V & Hosseinnia S H, Adaptive sliding mode impedance control of single-link flexiblemanipulators interacting with the environment at an unknown intermediate point, Robotica, 38 (2020) 1642β1664, doi:10.1017/S026357471900167X.
- Yu X, Hybrid-trajectory based terminal sliding mode control of a flexible space manipulator with an elastic base, Robotica, 38 (2020) 550β563, doi:10.1017/S0263574719000857.
- Thakur S & Barai R K, βJoint trajectory tracking of two-link flexible manipulator in presence of matched uncertainty, IEEE Int Conf Distrib Comput, VLSI, Elect Circuits Robotics (IEEE) 2021, 151β154, doi: 10.1109/DISCOVER52564.2021.9663625.
- Mohammadijoo A, Trajectory tracking of a 2-link mobile manipulator using sliding mode control method, Int J Mech Mechatron Eng, 17 (2023) 195β201, doi: 10.1109/DISCOVER52564.2021.9663625.
- Mohamed Z, Khairudin M, Husain A & Subudhi B, Linear matrix inequality-based robust proportional derivative control of a two-link flexible manipulator, J Vib Control, 22 (2016) 1244β1256, doi: 10.1177/1077546314536427.
- Mahmood A, Moheimani S R & Bhikkaji B, Precise tip positioning of a flexible manipulator using resonant control, IEEE/ASME Trans Mech, 13 (2008) 180β186, doi: 10.1109/TMECH.2008.918494.
- Pereira E, Aphale S S, Feliu V & Moheimani S R, Integral resonant control for vibration damping and precise tip-positioning of a single-link flexible manipulator, IEEE/ASME Trans Mech, 16 (2010) 232β240, doi: 10.1109/TMECH.2009.2039713.
- Lee S H & Lee C W, Hybrid control scheme for robust tracking of two-link flexible manipulator, J Intel Robot Syst, 34 (2002) 431β452, doi: 10.1109/TMECH.2009.2039713.
- Thakur S, Barai R K & Bhattacharya A, Trajectory tracking and link vibration reduction of flexible manipulator in the presence of matched uncertainty and external disturbances using lyapunov-based controller, Adv Signal Process, Embedded Systems IoT: Proc Seventh (Springer Nature Singapore) 2023, 543β552, doi: 10.1007/978-981-19-8865-3_49.
- Sahu V S D M, Samal P & Panigrahi C K, Implementation of crow search algorithm for achieving optimal control of a single-link flexible manipulator, Eng Technol Appl Sci Res, 13 (2023) 9947β9954, doi: 10.48084/etasr.5385.
- Sasaki M, Muguro J, Njeri W & Doss A S A, Adaptive notch filter in a two-link flexible manipulator for the compensation of vibration and gravity-induced distortion, Vib, 6 (2023) 286β302, doi: 10.3390/vibration6010018.
- Abdul-Lateef W E, Alothman Y N I & Gitaffa S A H, An optimal motion path planning control of a robotic manipulator based on the hybrid PI-sliding mode controller, Bulletin of Electrical Engineering and Informatics, 12 (2023) 727β737, doi: 10.11591/eei.v12i2.3968.
- Karkoub M, Balas G, Tamma K & Donath M, Robust control of flexible manipulators via ΞΌ-synthesis, Control Eng Pract, 8 (2000) 725β734, doi: 10.1016/S0967-0661(00)00006-X.
- Morlock M, Bajrami V & Seifried R, Trajectory tracking with collision avoidance for a parallel robot with flexible links, Control Eng Pract, 111 (2021) 104788, doi: 10.1016/j.conengprac.2021.104788.
- He W, Kang F, Kong L, Feng Y, Cheng G & Sun C, Vibration control of a constrained two-link flexible robotic manipulator with fixed-time convergence, IEEE Trans Cybern, 52(7) (2021) 5973β5983. doi: 10.1109/TCYB.2021.3064865.
- Sayahkarajy M, Mode shape analysis, modal linearization, and control of an elastic two-link manipulator based on the normal modes, Appl Math Model, 59 (2018) 546β570, doi: 10.1016/j.apm.2018.02.003.
- Yang X, Ge S S & He W, Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances, Int J Control, 91 (2018) 969β988, doi: 10.1080/00207179.2017.1300837.
- Ahmad M A, Mohamed Z, & Hambali N, Dynamic modelling of a two-link flexible manipulator system incorporating payload, IEEE Conf Indust Electron Appl (IEEE) 2008, 96β10, doi: 10.1109/ICIEA.2008. 4582487.
- Mishra N & Singh S, Hybrid vibration control of a Two-Link Flexible manipulator, App lSci, 1 (2019) 715, doi: 10.1007/s42452-019-0691-1.
- Wei C, Yueqing Y, Xuping Z & Liying S, Vibration controllability of under actuated robots with flexible links, Int Technol Innov Conf 2006, 1872β1878, doi: 10.1049/cp:20061072.
- Qingsong C & Ailan Y, Optimal actuator placement for vibration control of two-link piezoelectric flexible manipulator, Int Conf Mechanic Automat Control Eng (IEEE) 2010, 2448β2451, doi: 10.1109/MACE.2010.5535763.
- Gao H, He W, Zhou C & Sun C, Neural network control of a two-link flexible robotic manipulator using assumed mode method, IEEE Trans Ind Informat, 15 (2018) 755β765, doi: 10.1109/TII.2018.2818120.
- Huston R & Wang Y, Flexibility effects in multibody systems, in Computer-aided Analysis of Rigid and Flexible Mechanical Systems, 268 (1994) 351β376, doi: 10.1007/978-94-011-1166-9_11.
- Giorgio & Vescovo D D, Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms, Robotics, 7 (2018) 60, doi: 10.3390/robotics7040060.
- Lochan K, Roy B & Subudhi B, SMC controlled chaotic trajectory tracking of two-link flexible manipulator with PID sliding surface, IFAC-PapersOnLine, 49 (2016) 219β224, doi: 10.1016/j.ifacol.2016.03.056.
- Yang X & Zhong Z, Dynamics and terminal sliding mode control of two-link flexible manipulators with noncollocated feedback, IFAC-PapersOnLine, 46 (2013) 218β223, doi: 10.3182/20130902-3-CN-3020.00144.
- Slotine J E & Li W, Applied Nonlinear Control (Prentice hall Englewood Cliffs, NJ) 1991.
Abstract Views: 133
PDF Views: 82