Open Access Open Access  Restricted Access Subscription Access

Deep Neural Network Based Modelling of Chemisorption Process on Surface of Oxide Based Gas Sensors


Affiliations
1 J. C. Bose University of Science and Technology, YMCA, Faridabad 121 006, Haryana, India
2 Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, Haryana, India
 

The sensor response of the metal oxide based gas sensor has been simulated using Deep Neural Network (DNN) model. The neural network designed for the modelling of the sensor has single input layer, three hidden layers and single output layer. The linear regression algorithm has been used to compute the electrical conductance of the sensor at given temperature and pressure. The data generated through modified Wolkenstein method has been used for training, validation and testing of the developed network. The data for materials Tin (IV) oxide (SnO2), Tin (II) oxide (SnO) and Copper (I) oxide (Cu2O) with different Eg values has been utilized. The other input parameters like Temperature, ND, NC, NV, EF−ESSand ECS−EF are varied for the specific range to collect a variety of data for calculation of electrical conductance of the sensor. The total data used for training, validation and testing was 1,90,512 data points. The plots for training, validation and testing phase have been plotted. The sensor response computed through the proposed model is validated with the results of already published mathematical model. The sensor response shows steep change when the gas concentration of the target gas reaches above 10-8 atm. The proposed model can be retrained or transfer learning can be applied for using the same model for other types of materials for gas sensing applications.

Keywords

Chemisorption, Deep neural network, Gas sensor, Numerical modelling.
User
Notifications
Font Size


  • Deep Neural Network Based Modelling of Chemisorption Process on Surface of Oxide Based Gas Sensors

Abstract Views: 256  |  PDF Views: 85

Authors

Rahul Gupta
J. C. Bose University of Science and Technology, YMCA, Faridabad 121 006, Haryana, India
Pradeep Kumar
J. C. Bose University of Science and Technology, YMCA, Faridabad 121 006, Haryana, India
Dinesh Kumar
Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, Haryana, India

Abstract


The sensor response of the metal oxide based gas sensor has been simulated using Deep Neural Network (DNN) model. The neural network designed for the modelling of the sensor has single input layer, three hidden layers and single output layer. The linear regression algorithm has been used to compute the electrical conductance of the sensor at given temperature and pressure. The data generated through modified Wolkenstein method has been used for training, validation and testing of the developed network. The data for materials Tin (IV) oxide (SnO2), Tin (II) oxide (SnO) and Copper (I) oxide (Cu2O) with different Eg values has been utilized. The other input parameters like Temperature, ND, NC, NV, EF−ESSand ECS−EF are varied for the specific range to collect a variety of data for calculation of electrical conductance of the sensor. The total data used for training, validation and testing was 1,90,512 data points. The plots for training, validation and testing phase have been plotted. The sensor response computed through the proposed model is validated with the results of already published mathematical model. The sensor response shows steep change when the gas concentration of the target gas reaches above 10-8 atm. The proposed model can be retrained or transfer learning can be applied for using the same model for other types of materials for gas sensing applications.

Keywords


Chemisorption, Deep neural network, Gas sensor, Numerical modelling.

References